满分5 > 初中数学试题 >

工程师有一块长AD为12分米,宽AB为8分米的铁板,截去了长AE=2分米,AF=...

工程师有一块长AD为12分米,宽AB为8分米的铁板,截去了长AE=2分米,AF=4分米的直角三角形,在余下manfen5.com 满分网的五边形中结的矩形MGCH,M必须在线段EF上.
(1)若截得矩形MGCH的面积为70平方分米,求矩形MGCH的长和宽.
(2)当EM为多少时,矩形MGCH的面积最大?并求此时矩形的周长.
(1)作MN⊥AE,设矩形的长为x,宽为y由“”和“S=xy”求得长和宽; (2)设EM长为a,矩形MGCH的面积用MH、MG表示,由比值关系把S表示为a的函数式,求得最大值. 【解析】 (1)作MN⊥AE,设矩形的长为x分米,宽为y分米; ∵MN⊥AE, ∴MN∥AF, ∴△EMN∽△EFA ∴ 又∵MN=AD-x=12-x NE=y-(AB-AE)=y-6 AF=4,AE=2 , S=xy=70 解得:x=10,y=7 答:矩形MGCH的长和宽分别为10分米和7分米. (2)设EM长为a,△EMN∽△EFA,, EF==2,MN=,NE=, MH=AD-MN=12-,MG=BE+EN=AB-AE+EN=6+ ∴S=MH×MG =(12-)×( 6+) = 由此,a=0时,面积最大即M点与E点重合. 此时的周长L=2MH+2MG=36分米. 答:当EM为0时,矩形MGCH的面积最大,并求此时矩形的周长为36分米.
复制答案
考点分析:
相关试题推荐
恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.
(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数关系式.
(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用)
(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?
查看答案
某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.
若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=manfen5.com 满分网x+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w(元)(利润=销售额-成本-广告费).
若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳manfen5.com 满分网x2元的附加费,设月利润为w(元)(利润=销售额-成本-附加费).
(1)当x=1000时,y=______元/件,w=______元;
(2)分别求出w,w与x间的函数关系式(不必写x的取值范围);
(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值;
(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?
参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(manfen5.com 满分网).
查看答案
如图,东梅中学要在教学楼后面的空地上用40米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙,其余三边用竹篱笆.设矩形的宽为x,面积为y.
(1)求y与x的函数关系式,并求自变量x的取值范围;
(2)生物园的面积能否达到210平方米?说明理由.

manfen5.com 满分网 查看答案
如图中是抛物线形拱桥,当水面在n时,拱顶离水面2m,水面宽4m,水面下降1m,水面宽度增加多少?
manfen5.com 满分网
查看答案
某商场购进一批单价为50元的商品,规定销售时单价不低于进价,每件的利润不超过40%.其中销售量y(件)与所售单价x(元)的关系可以近似的看作如图所表示的一次函数.
(1)求y与x之间的函数关系式,并求出x的取值范围;
(2)设该公司获得的总利润(总利润=总销售额-总成本)为w元,求w与x之间的函数关系式,当销售单价为何值时,所获利润最大,最大利润是多少?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.