有不透明的甲、乙两个口袋,甲口袋装有3张完全相同的卡片,标的数分别是-1,2,-3,乙口袋装有4张完全相同的卡片,标的数分别是1,-2,-3,4.现随机从甲袋中抽取一张将数记为x,从乙袋中抽取一张将数记为y.
(1)请你用树状图或列表法求出从两个口袋中所抽取卡片的数组成的对应点(x,y)落在第二象限的概率;
(2)直接写出其中所有点(x,y)落在函数y=x
2图象上的概率.
考点分析:
相关试题推荐

如图,矩形ABCD的长,宽分别为

和1,且OB=1,点E(

,2),连接AE,ED.
(1)求经过A,E,D三点的抛物线的表达式;
(2)若以原点为位似中心,将五边形AEDCB放大,使放大后的五边形的边长是原五边形对应边长的3倍,请在下图网格中画出放大后的五边形A′E′D′C′B′;
(3)经过A′,E′,D′三点的抛物线能否由(1)中的抛物线平移得到?请说明理由.
查看答案
如图,已知A(-4,0),B(0,4),现以A点为位似中心,相似比为9:4,将OB向右侧放大,B点的对应点为C.
(1)求C点坐标及直线BC的解析式;
(2)一抛物线经过B、C两点,且顶点落在x轴正半轴上,求该抛物线的解析式并画出函数图象;
(3)现将直线BC绕B点旋转与抛物线相交于另一点P,请找出抛物线上所有满足到直线AB距离为

的点P.
查看答案
如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°
操作:将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕点E旋转,并使边DE与边AB交于点P,边EF与边BC于点Q.
探究一:在旋转过程中,
(1)如图2,当

时,EP与EQ满足怎样的数量关系?并给出证明;
(2)如图3,当

时,EP与EQ满足怎样的数量关系?并说明理由;
(3)根据你对(1)、(2)的探究结果,试写出当

时,EP与EQ满足的数量关系式为______,其中m的取值范围是______
查看答案
如图在Rt△ABC中,∠A=90°,AB=10,AC=5,若动点P从点B出发,沿线段BA运动到A点为止,运动为每秒2个单位长度.过点P作PM∥BC,交AC于点M,设动点P运动时间为x秒,AM的长为y.
(1)求出y关于x的函数关系式,并写出自变量x的取值范围;
(2)当x为何值时,△BPM的面积S有最大值,最大值是多少?
查看答案
如图在梯形ABCD中,DC∥AB,∠A=90°,AD=6厘米,DC=4厘米,BC的坡度i=3:4,动点P从A出发以2厘米/秒的速度沿AB方向向点B运动,动点Q从点B出发以3厘米/秒的速度沿B⇒C⇒D方向向点D运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止.设动点运动的时间为t秒.
(1)求边BC的长;
(2)当t为何值时,PC与BQ相互平分;
(3)连接PQ,设△PBQ的面积为y,探求y与t的函数关系式,求t为何值时,y有最大值?最大值是多少?
查看答案