满分5 > 初中数学试题 >

如图,矩形ABCD的长,宽分别为和1,且OB=1,点E(,2),连接AE,ED....

manfen5.com 满分网如图,矩形ABCD的长,宽分别为manfen5.com 满分网和1,且OB=1,点E(manfen5.com 满分网,2),连接AE,ED.
(1)求经过A,E,D三点的抛物线的表达式;
(2)若以原点为位似中心,将五边形AEDCB放大,使放大后的五边形的边长是原五边形对应边长的3倍,请在下图网格中画出放大后的五边形A′E′D′C′B′;
(3)经过A′,E′,D′三点的抛物线能否由(1)中的抛物线平移得到?请说明理由.
(1)A,E,D三点坐标已知,可用一般式来求解; (2)延长OA到A′,使OA′=3OA,同理可得到其余各点; (3)根据二次项系数是否相同即可判断两个函数是否由平移得到. 【解析】 (1)设经过A,E,D三点的抛物线的表达式为y=ax2+bx+c ∵A(1,),E(,2),D(2,)(1分) ∴,解之,得 ∴过A,E,D三点的抛物线的表达式为y=-2x2+6x-.(4分) (2)如图.(7分) (3)不能,理由如下:(8分) 设经过A′,E′,D′三点的抛物线的表达式为y=a′x2+b′x+c′ ∵A′(3,),E′(,6),D′(6,) ∴, 解之,得 a=-2,, ∴a≠a′ ∴经过A′,E′,D′三点的抛物线不能由(1)中的抛物线平移得到.(8分)
复制答案
考点分析:
相关试题推荐
如图,已知A(-4,0),B(0,4),现以A点为位似中心,相似比为9:4,将OB向右侧放大,B点的对应点为C.
(1)求C点坐标及直线BC的解析式;
(2)一抛物线经过B、C两点,且顶点落在x轴正半轴上,求该抛物线的解析式并画出函数图象;
(3)现将直线BC绕B点旋转与抛物线相交于另一点P,请找出抛物线上所有满足到直线AB距离为manfen5.com 满分网的点P.

manfen5.com 满分网 查看答案
如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°
操作:将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕点E旋转,并使边DE与边AB交于点P,边EF与边BC于点Q.
探究一:在旋转过程中,
(1)如图2,当manfen5.com 满分网时,EP与EQ满足怎样的数量关系?并给出证明;
(2)如图3,当manfen5.com 满分网时,EP与EQ满足怎样的数量关系?并说明理由;
(3)根据你对(1)、(2)的探究结果,试写出当manfen5.com 满分网时,EP与EQ满足的数量关系式为______,其中m的取值范围是______
查看答案
如图在Rt△ABC中,∠A=90°,AB=10,AC=5,若动点P从点B出发,沿线段BA运动到A点为止,运动为每秒2个单位长度.过点P作PM∥BC,交AC于点M,设动点P运动时间为x秒,AM的长为y.
(1)求出y关于x的函数关系式,并写出自变量x的取值范围;
(2)当x为何值时,△BPM的面积S有最大值,最大值是多少?

manfen5.com 满分网 查看答案
如图在梯形ABCD中,DC∥AB,∠A=90°,AD=6厘米,DC=4厘米,BC的坡度i=3:4,动点P从A出发以2厘米/秒的速度沿AB方向向点B运动,动点Q从点B出发以3厘米/秒的速度沿B⇒C⇒D方向向点D运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止.设动点运动的时间为t秒.
(1)求边BC的长;
(2)当t为何值时,PC与BQ相互平分;
(3)连接PQ,设△PBQ的面积为y,探求y与t的函数关系式,求t为何值时,y有最大值?最大值是多少?

manfen5.com 满分网 查看答案
如图,直线y=2x+2与x轴、y轴分别相交于A、B两点,将△AOB绕点O顺时针旋转90°得到△A1OB1
(1)在图中画出△A1OB1
(2)求经过A,A1,B1三点的抛物线的解析式.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.