如图,在平面直角坐标系中,点O为坐标原点,以点A(0,-3)为圆心,5为半径作圆A,交x轴于B,C两点,交y轴于点D,E两点.
(1)求点B,C,D的坐标;
(2)如果一个二次函数图象经过B,C,D三点,求这个二次函数解析式;
(3)P为x轴正半轴上的一点,过点P作与圆A相离并且与x轴垂直的直线,交上述二次函数图象于点F,当△CPF中一个内角的正切之为

时,求点P的坐标.
考点分析:
相关试题推荐
正方形ABCD的边长为2,E是射线CD上的动点(不与点D重合),直线AE交直线BC于点G,∠BAE的平分线交射线BC于点O.
(1)如图,当CE=

时,求线段BG的长;
(2)当点O在线段BC上时,设

,BO=y,求y关于x的函数解析式;
(3)当CE=2ED时,求线段BO的长.
查看答案
如图,将含30°角的直角三角板ABC(∠B=30°)绕其直角顶点A逆时针旋转α解(0°<α<90°),得到Rt△ADE,AD与BC相交于点M,过点M作MN∥DE交AE于点N,连接NC.设BC=4,BM=x,△MNC的面积为S
△MNC,△ABC的面积为S
△ABC.
(1)求证:△MNC是直角三角形;
(2)试求用x表示S
△MNC的函数关系式,并写出x的取值范围;
(3)以点N为圆心,NC为半径作⊙N,
①当直线AD与⊙N相切时,试探求S
△MNC与S
△ABC之间的关系;
②当S
△MNC=

S
△ABC时,试判断直线AD与⊙N的位置关系,并说明理由.
查看答案
定义[p,q]为一次函数y=px+q的特征数.
(1)若特征数是[2,k-2]的一次函数为正比例函数,求k的值;
(2)设点A,B分别为抛物线y=(x+m)(x-2)与x,y轴的交点,其中m>0,且△OAB的面积为4,O为原点,求图象过A,B两点的一次函数的特征数.
查看答案
如图所示,在平面直角坐标系中,矩形ABOC的边BO在x轴的负半轴上,边OC在y轴的正半轴上,且AB=1,OB=

,矩形ABOC绕点O按顺时针方向旋转60°后得到矩形EFOD.点A的对应点为点E,点B的对应点为点F,点C的对应点为点D,抛物线y=ax
2+bx+c过点A,E,D.
(1)判断点E是否在y轴上,并说明理由;
(2)求抛物线的函数表达式;
(3)在x轴的上方是否存在点P,点Q,使以点O,B,P,Q为顶点的平行四边形的面积是矩形ABOC面积的2倍,且点P在抛物线上?若存在,请求出点P,点Q的坐标;若不存在,请说明理由.
查看答案
已知抛物线y=-ax
2+2ax+b与x轴的一个交点为A(-1,0),与y轴的正半轴交于点C.
(1)直接写出抛物线的对称轴,及抛物线与x轴的另一个交点B的坐标;
(2)当点C在以AB为直径的⊙P上时,求抛物线的解析式;
(3)坐标平面内是否存在点M,使得以点M和(2)中抛物线上的三点A、B、C为顶点的四边形是平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由.
查看答案