满分5 > 初中数学试题 >

如图,二次函数y=ax2+bx+c(a>0)与坐标轴交于点A、B、C且OA=1,...

如图,二次函数y=ax2+bx+c(a>0)与坐标轴交于点A、B、C且OA=1,OB=OC=3.
(1)求此二次函数的解析式;
(2)写出顶点坐标和对称轴方程;
(3)点M、N在y=ax2+bx+c的图象上(点N在点M的右边),且MN∥x轴,求以MN为直径且与x轴相切的圆的半径.

manfen5.com 满分网
(1)由OA=1,OB=OC=3,可知三点的坐标分别为A(-1,0),B(3,0),C(0,-3),用待定系数法求得解析式; (2)把解析式变换成顶点式,写出坐标; (3)由(2)知,对称轴为x=1,当MN在x轴下方时,设圆半径为r,则点N的坐标为(1+r,-r),代入解析式求得r的值,同理求得当MN在x轴上方时r的值. 【解析】 (1)依题意A(-1,0),B(3,0),C(0,-3)分别代入y=ax2+bx+c, 解方程组得所求解析式为y=x2-2x-3; (2)y=x2-2x-3=(x-1)2-4, ∴顶点坐标(1,-4),对称轴x=1; (3)设圆半径为r,当MN在x轴下方时,N点坐标为(1+r,-r), 把N点代入y=x2-2x-3得, 当MN在x轴上方时,N点坐标为(1+r,r), 把N点代入y=x2-2x-3得r=. ∴圆的半径为或.
复制答案
考点分析:
相关试题推荐
如图,点E(-4,0),以点E为圆心,2为半径的圆与x轴交于A、B两点,抛物线y=manfen5.com 满分网x2+bx+c过点A和点B,与y轴交于C点.
(1)求抛物线的解析式;
(2)求出点C的坐标,并画出抛物线的大致图象;
(3)点Q(m,manfen5.com 满分网)(m<0)在抛物线y=manfen5.com 满分网x2+bx+c的图象上,点P为此抛物线对称轴上的一个动点,求PQ+PB的最小值;
(4)CF是圆E的切线,点F是切点,在抛物线上是否存在一点M,使△COM的面积等于△COF的面积?若存在,请求出点M的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
在直角坐标平面中,O为坐标原点,二次函数y=-x2+(k-1)x+4的图象与y轴交于点A,与x轴的负半轴交于点B,且S△OAB=6.
(1)求点A与点B的坐标;
(2)求此二次函数的解析式;
(3)如果点P在x轴上,且△ABP是等腰三角形,求点P的坐标.

manfen5.com 满分网 查看答案
已知直线y=-x-1与x、y轴分别交于A、B曰两点,将其向右平移4个单位所得直线分别与x、y轴交于C、D两点.
(1)求C、D两点的坐标;
(2)求过A、C、D三点的抛物线的解析式;
(3)在(2)中所求抛物线的对称轴上,是否存在点P,使△PAB为等腰三角形?若存在,求出所有的点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,二次函数y=ax2-5ax+4a(a≠0)的图象与x轴交于A、B两点(A在B的左侧),与y轴交于点C,点C关于抛物线对称轴的对称点为D,连接BD.
(1)求A、B两点的坐标;
(2)若AD⊥BC,垂足为P,求二次函数的表达式;
(3)在(2)的条件下,若直线x=m把△ABD的面积分为1:2的两部分,求m的值.

manfen5.com 满分网 查看答案
已知点A(a,y1)、B(2a,y2)、C(3a,y3)都在抛物线y=5x2+12x上.
(1)求抛物线与x轴的交点坐标;
(2)当a=1时,求△ABC的面积;
(3)是否存在含有y1,y2,y3,且与a无关的等式?如果存在,试给出一个,并加以证明;如果不存在,说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.