满分5 > 初中数学试题 >

如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,A...

manfen5.com 满分网如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.
(1)求证:PC是⊙O的切线;
(2)求证:BC=manfen5.com 满分网AB;
(3)点M是manfen5.com 满分网的中点,CM交AB于点N,若AB=4,求MN•MC的值.
(1)已知C在圆上,故只需证明OC与PC垂直即可;根据圆周角定理,易得∠PCB+∠OCB=90°,即OC⊥CP;故PC是⊙O的切线; (2)AB是直径;故只需证明BC与半径相等即可; (3)连接MA,MB,由圆周角定理可得∠ACM=∠BCM,进而可得△MBN∽△MCB,故BM2=MN•MC;代入数据可得MN•MC=BM2=8. (1)证明:∵OA=OC, ∴∠A=∠ACO. 又∵∠COB=2∠A,∠COB=2∠PCB, ∴∠A=∠ACO=∠PCB. 又∵AB是⊙O的直径, ∴∠ACO+∠OCB=90°. ∴∠PCB+∠OCB=90°. 即OC⊥CP, ∵OC是⊙O的半径. ∴PC是⊙O的切线.(3分) (2)证明:∵AC=PC, ∴∠A=∠P, ∴∠A=∠ACO=∠PCB=∠P. 又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB, ∴∠COB=∠CBO, ∴BC=OC. ∴BC=AB.(6分) (3)【解析】 连接MA,MB, ∵点M是的中点, ∴, ∴∠ACM=∠BCM. ∵∠ACM=∠ABM, ∴∠BCM=∠ABM. ∵∠BMN=∠BMC, ∴△MBN∽△MCB. ∴. ∴BM2=MN•MC. 又∵AB是⊙O的直径,, ∴∠AMB=90°,AM=BM. ∵AB=4, ∴BM=2. ∴MN•MC=BM2=8.(10分)
复制答案
考点分析:
相关试题推荐
如图,AB为半圆O的直径,点C在半圆O上,过点O作BC的平行线交AC于点E,交过点A的直线于点D,且∠D=∠BAC.
(1)求证:AD是半圆O的切线;
(2)若BC=2,CE=manfen5.com 满分网,求AD的长.

manfen5.com 满分网 查看答案
如图,直线EF交⊙O于A、B两点,AC是⊙O直径,DE是⊙O的切线,且DE⊥EF,垂足为E.
(1)求证:AD平分∠CAE;
(2)若DE=4cm,AE=2cm,求⊙O的半径.

manfen5.com 满分网 查看答案
如图,△ABC中,AC=BC,以BC上一点O为圆心、OB为半径作⊙O交AB于点D.已知经过点D的⊙O切线恰好经过点C.
(1)试判断CD与AC的位置关系,并证明;
(2)若△ACB∽△CDB,且AC=3,求圆心O到直线AB的距离.

manfen5.com 满分网 查看答案
已知:如图,在△ABC中,∠ABC=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与AC切于点D,连接DB,DE,OC.
(1)从图中找出一对相似三角形(不添加任何字母和辅助线),并证明你的结论;
(2)若AD=2,AE=1,求CD的长.

manfen5.com 满分网 查看答案
如图,已知AB是⊙O的直径,PA是⊙O的切线,过点B作BC∥OP交⊙O于点C,连接AC.
(1)求证:△ABC∽△POA;
(2)若AB=2,PA=manfen5.com 满分网,求BC的长.(结果保留根号)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.