满分5 > 初中数学试题 >

如图,已知在等腰△ABC中,∠A=∠B=30°,过点C作CD⊥AC交AB于点D....

如图,已知在等腰△ABC中,∠A=∠B=30°,过点C作CD⊥AC交AB于点D.
(1)尺规作图:过A,D,C三点作⊙O(只要求作出图形,保留痕迹,不要求写作法);
(2)求证:BC是过A,D,C三点的圆的切线;
(3)若过A,D,C三点的圆的半径为manfen5.com 满分网,则线段BC上是否存在一点P,使得以P,D,B为顶点的三角形与△BCO相似?若存在,求出DP的长;若不存在,请说明理由.

manfen5.com 满分网
(1)因为CD⊥AC,所以以AD为直径作圆即为⊙O; (2)BC过半径OC外端点C,要证BC是过A,D,C三点的圆的切线,只证OC⊥BC即可. (3)通过证明△BDP∽△BCO,再利用相似比即可求得DP的长. (1)【解析】 作AD中点O(1分) 以点O为圆心,OA长为半径作圆.(1分) (2)证明:∵CD⊥AC, ∴∠ACD=90°, ∴AD是⊙O的直径.(1分) 连接OC, ∵∠A=∠B=30°, ∴∠ACB=120°. 又∵OA=OC, ∴∠ACO=∠A=30°.(1分) ∴∠BCO=∠ACB-∠ACO=120°-30°=90°.(1分) ∴BC⊥OC. ∴BC是⊙O的切线.(1分) (3)【解析】 存在.(1分) ∵∠BCD=∠ACB-∠ACD=120°-90°=30°, ∴∠BCD=∠B. 即DB=DC. 又∵在Rt△ACD中,DC=AD•sin30°=, ∴BD=.(1分) 解法一:①过点D作DP1∥OC,则△P1DB∽△COB,. ∵BO=BD+OD=, ∴P1D=×OC=×=.(1分) ②过点D作DP2⊥AB,则△BDP2∽△BCO, ∴. ∵BC=, ∴P2D=×OC==1.(1分) 解法二:①当△BP1D∽△BCO时,∠DP1B=∠OCB=90°, 在Rt△BP1D中,DP1=BD•sin30°=.(1分) ②当△BDP2∽△BCO时,∠P2DB=∠OCB=90°, 在Rt△BP2D中,DP2=BD•tan30°=1.(1分)
复制答案
考点分析:
相关试题推荐
已知:如图,在Rt△ABC中,∠ABC=90°,以AB上的点O为圆心,OB的长为半径的圆与AB交于点E,与AC切于点D.
(1)求证:BC=CD;
(2)求证:∠ADE=∠ABD;
(3)设AD=2,AE=1,求⊙O直径的长.

manfen5.com 满分网 查看答案
如图,圆O是△ABC的外接圆,AB=AC,过点A作AP∥BC,交BO的延长线于点P.
(1)求证:AP是圆O的切线;
(2)若圆O的半径R=5,BC=8,求线段AP的长.

manfen5.com 满分网 查看答案
如图,AB为⊙O的直径,劣manfen5.com 满分网=manfen5.com 满分网弧BD∥CE,连接AE并延长交BD于D.
求证:
(1)BD是⊙O的切线;
(2)AB2=AC•AD.

manfen5.com 满分网 查看答案
如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦DE⊥AB分别交⊙O于E,交AB于H,交AC于F.P是ED延长线上一点且PC=PF.
(1)求证:PC是⊙O的切线;
(2)点D在劣弧AC什么位置时,才能使AD2=DE•DF,为什么?
(3)在(2)的条件下,若OH=1,AH=2,求弦AC的长.

manfen5.com 满分网 查看答案
如图,点P为△ABC的内心,延长AP交△ABC的外接圆于D,在AC延长线上有一点E,满足AD2=AB•AE.
求证:DE是⊙O的切线.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.