满分5 > 初中数学试题 >

如图1,等腰直角三角形ABC的腰长是2,∠ABC=90度.以AB为直径作半圆O,...

如图1,等腰直角三角形ABC的腰长是2,∠ABC=90度.以AB为直径作半圆O,M是BC上一动点(不运动至B、C两点),过点M引半圆为O的切线,切点是P,过点A作AB的垂线AN,交切线MP于点N,AC与ON、MN分别交于点E、F.
(1)证明:△MON是直角三角形;
(2)当BM=manfen5.com 满分网时,求manfen5.com 满分网的值(结果不取近似值);
(3)当BM=manfen5.com 满分网时(图2),判断△AEO与△CMF是否相似?如果相似,请证明;如果不相似,请说明理由.
manfen5.com 满分网
(1)连接OP,通过证Rt△MOP≌Rt△MOB和Rt△NOP≌Rt△NOA,说明∠MOP=∠MOB和∠NOP=∠NOA,从而推出∠MON=90°; (2)由(1)的结论,易证得△BOM∽△ANO,得AN:OB=OA:BM,由此可求得AN的长;由于NA、BM同垂直于AB,即AN∥BC,根据平行线分线段成比例定理,即可求得CF:AF的值. (3)当BM=时,Rt△OBM中,易求得∠OMB=60°;根据切线长定理知:∠OMP=60°;因此∠CMF=60°;由(2)的相似三角形知∠AOE=∠OMB=60°;由此可证得∠AOE=∠CMF;又知△ABC为等腰直角三角形,即∠C=∠BAC=45°,由此可证得△AEO与△CMF. (1)证明:连接OP; ∵MB和MP是圆的切线,∴MP=MB; 又∵OP=OB,OM=OM, ∴Rt△MOP≌Rt△MOB; ∴∠POM=∠BOM,同理∠AON=∠PON; ∵∠POM+∠BOM+∠AON+∠PON=180°, ∴2(∠NOP+∠POM)=180°即∠NOP+∠POM=90°; ∴△NOM是直角三角形. (2)【解析】 ∵△ABC是等腰直角三角形,AB=BC=2, ∴AO=OB=1,CM=BC-BM=2-; ∵∠MOB+∠AON=∠AON+∠ANO=90° ∴∠BOM=∠ANO; ∴Rt△OBM∽Rt△NAO, ∴OB:AN=BM:AO,得AN=; ∵AN⊥AB,CB⊥AB, ∴AN∥BC; ∴CF:AF=CM:AN=(2-):=2-3; (3)【解析】 ∵BM=,OB=1, ∴tan∠MOB=MB:OB=,即∠MOB=30°; ∴∠FMC=∠OMB=60°; ∴∠CMF=180°-2∠OMB=60°,∠EOA=180°-∠NOM-∠MOB=60°; 又∵∠C=∠OAE=45° ∴△AEO∽△CMF.
复制答案
考点分析:
相关试题推荐
已知:如图,直线EF与⊙O相切于点C,AB是⊙O的直径,且BC=3,Ac=4.
(1)求半径OC的长;
(2)在切线EF上找一点M,使得以B、M、C为顶点的三角形与△ACO相似.

manfen5.com 满分网 查看答案
已知:如图,AB是⊙O的直径,⊙O过AC的中点D,DE切⊙O于点D,交BC于点E.
(1)求证:DE⊥BC;
(2)如果CD=4,CE=3,求⊙O的半径.

manfen5.com 满分网 查看答案
如图,已知CA、CB都经过点C,AC是⊙B的切线,⊙B交AB于点D,连接CD并延长交OA于点E,连接AF.
(1)求证:AE⊥AB;
(2)求证:DE•DC=2AD•DB;
(3)如果AE=3,BD=4,求DC的长.

manfen5.com 满分网 查看答案
如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦ED分别交⊙O于点E,交AB于点H,交AC于点F,过点C的切线交ED的延长线于点P.
(1)若PC=PF,求证:AB⊥ED;
(2)点D在劣弧AC的什么位置时,才能使AD2=DE•DF,为什么?

manfen5.com 满分网 查看答案
如图,在△ABC中,∠C=90°,以BC上一点O为圆心,以OB为半径的圆交AB于点M,交BC于点N.
(1)求证:BA•BM=BC•BN;
(2)如果CM是⊙O的切线,N为OC的中点,当AC=3时,求AB的值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.