满分5 > 初中数学试题 >

如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦ED分别交⊙O于点...

如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦ED分别交⊙O于点E,交AB于点H,交AC于点F,过点C的切线交ED的延长线于点P.
(1)若PC=PF,求证:AB⊥ED;
(2)点D在劣弧AC的什么位置时,才能使AD2=DE•DF,为什么?

manfen5.com 满分网
(1)作辅助线,连接OC.根据切线的性质,OC⊥PC.根据PC=PF,OC=OA,可得:∠PCF=∠PFC,∠OCF=∠OAC. 在Rt△FHA中,可得:∠FHA=90°,故AB⊥ED; (2)根据AD2=DE•DF,可得:△FAD∽△AED,∠FAD=∠DEA.从而可知:=,即D在劣弧AC的中点. (1)证明:连接OC,∵PC为⊙O的切线, ∴∠OCP=∠FCP+∠OCF=90°, ∵PC=PF, ∴∠PCF=∠PFC, ∵OA=OC, ∴∠OCA=∠OAC, ∵∠CFP=∠AFH, ∴∠AFH+∠OAC=90°, ∴∠AHF=90°, 即:AB⊥ED. (2)【解析】 D在劣弧AC的中点时,才能使AD2=DE•DF. 连接AE.若AD2=DE•DF, 可得:△FAD∽△AED, ∴∠FAD=∠DEA, ∴=. 即D为劣弧AC的中点时,能使AD2=DE•DF.
复制答案
考点分析:
相关试题推荐
如图,在△ABC中,∠C=90°,以BC上一点O为圆心,以OB为半径的圆交AB于点M,交BC于点N.
(1)求证:BA•BM=BC•BN;
(2)如果CM是⊙O的切线,N为OC的中点,当AC=3时,求AB的值.

manfen5.com 满分网 查看答案
如图1,在平面直角坐标系xOy中,点M在x轴的正半轴上,⊙M交x轴于A、B两点,交y轴于C、D两点,且C为manfen5.com 满分网的中点,AE交y轴于G点,若点A的坐标为(-2,0),AE=8.
manfen5.com 满分网
(1)求点C的坐标;
(2)连接MG、BC,求证:MG∥BC;
(3)如图2,过点D作⊙M的切线,交x轴于点P.动点F在⊙M的圆周上运动时,manfen5.com 满分网的比值是否发生变化?若不变,求出比值;若变化,说明变化规律.
查看答案
如图,已知AB是⊙O的直径,PA是⊙O的切线,过点B作BC∥OP交⊙O于点C,连接AC.
(1)求证:△ABC∽△POA;
(2)若AB=2,PA=manfen5.com 满分网,求BC的长.(结果保留根号)

manfen5.com 满分网 查看答案
如图,⊙O的直径BC=4,过点C作⊙O的切线m,D是直线m上一点,且DC=2,A是线段BO上一动点,连接AD交⊙O于G,过点A作AD的垂线交直线m于点F,交⊙O于点H,连接GH交BC于E.
(1)当点A是BO的中点时,求AF的长;
(2)若∠AGH=∠AFD,求△AGH的面积.

manfen5.com 满分网 查看答案
在Rt△ABC中,∠C=90°,AC=3,BC=4.
(1)求AB的长;
(2)如图,已知P为BC的中点,以P为圆心的⊙P与AB相切于点D.若以C为圆心的⊙C与⊙P相切,求⊙C的半径.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.