满分5 > 初中数学试题 >

在Rt△ABC中,∠C=90°,AC=3,BC=4. (1)求AB的长; (2)...

在Rt△ABC中,∠C=90°,AC=3,BC=4.
(1)求AB的长;
(2)如图,已知P为BC的中点,以P为圆心的⊙P与AB相切于点D.若以C为圆心的⊙C与⊙P相切,求⊙C的半径.

manfen5.com 满分网
(1)根据勾股定理进行计算; (2)注意分情况讨论:两圆相切,可能内切,也可能外切.根据两圆的位置关系与数量之间的联系,主要是求得⊙P的半径,再进一步进行分析即可. 【解析】 (1)∵C=90°,AC=3,BC=4, ∴AB=5; (2)根据题意,得PC=PB=2, 连接PD,则PD⊥AB, ∵∠BDP=∠C=90°,又∠B=∠B, ∴△ABC∽△PBD. ∴,PD=1.2.即该圆的半径是1.2.
复制答案
考点分析:
相关试题推荐
如图,半圆O的直径为AB,D是半圆上的一个动点(不与A、B重合),连接BD并延长至C,使CD=BD,过点D作半圆O的切线交AC于E点.
(1)猜想DE与AC的位置关系,并说明理由;
(2)当AB=6,BD=2时,求DE的长.

manfen5.com 满分网 查看答案
如图,四边形ABCD是矩形,点E在BC边上,AE与BD交于点F,∠BAE=∠ADB.
(1)求证:△ABE∽△DAB;
(2)若AB=12,AD=16,以B为圆心的圆与AE相切,求⊙B的半径.

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,BC是⊙O的切线,切点为点B,点D是⊙O上的一点,且AD∥OC.求证:AD•BC=OB•BD.

manfen5.com 满分网 查看答案
在Rt△ACB中,∠C=90°,AC=3,BC=4,D、E分别是边AB、AC的中点.⊙O过点D、E,且与AB相切于点D,求⊙O的半径r.

manfen5.com 满分网 查看答案
已知:如图,△ABC中,CA=CB,点D为AC的中点,以AD为直径的⊙O切BC于点E,AD=2.
(1)求BE的长;
(2)过点D作DF∥BC交⊙O于点F,求DF的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.