满分5 > 初中数学试题 >

如图,在△ABC中,∠C=90°,AC=3,BC=4.0为BC边上一点,以0为圆...

如图,在△ABC中,∠C=90°,AC=3,BC=4.0为BC边上一点,以0为圆心,OB为半径作半圆与BC边和AB边分别交于点D、点E,连接DE.
(1)当BD=3时,求线段DE的长;
(2)过点E作半圆O的切线,当切线与AC边相交时,设交点为F.求证:△FAE是等腰三角形.

manfen5.com 满分网
(1)由DB为直径可以得到∠DEB=∠C=90°,由此可以证明Rt△DBE∽Rt△ABC有,把AC,BD,AB的值即可求得DE的值; (2)由弦切角定理可得,∠B=∠FED,再由等角的余角相等知,∠A=∠FEA,故AF=EF. (1)【解析】 ∵∠C=90°,AC=3,BC=4, ∴AB=5, ∵DB为直径, ∴∠DEB=∠C=90°, 又∵∠B=∠B, ∴△DBE∽△ABC, ∴, 即, ∴DE=; (2)证法一:连接OE, ∵EF为半圆O的切线, ∴∠DEO+∠DEF=90°, ∴∠AEF=∠DEO, ∵△DBE∽△ABC, ∴∠A=∠EDB, 又∵∠EDO=∠DEO, ∴∠AEF=∠A, ∴△FAE是等腰三角形; 证法二:连接OE ∵EF为切线, ∴∠AEF+∠OEB=90°, ∵∠C=90°, ∴∠A+∠B=90°, ∵OE=OB, ∴∠OEB=∠B, ∴∠AEF=∠A, ∴△FAE是等腰三角形.
复制答案
考点分析:
相关试题推荐
如图,在Rt△ABC中,斜边BC=12,∠C=30°,D为BC的中点,△ABD的外接圆⊙O与AC交于F点,过A作⊙O的切线AE交DF的延长线于E点.
(1)求证:AE⊥DE;
(2)计算:AC•AF的值.

manfen5.com 满分网 查看答案
已知:如图1,把矩形纸片ABCD折叠,使得顶点A与边DC上的动点P重合(P不与点D,C重合),MN为折痕,点M,N分别在边BC,AD上,连接AP,MP,AM,AP与MN相交于点F.⊙O过点M,C,P.
(1)请你在图1中作出⊙O(不写作法,保留作图痕迹);
(2)manfen5.com 满分网manfen5.com 满分网是否相等?请你说明理由;
(3)随着点P的运动,若⊙O与AM相切于点M时,⊙O又与AD相切于点H.设AB为4,请你通过计算,画出这时的图形.(图2,3供参考)
manfen5.com 满分网
查看答案
已知:如图,⊙A与y轴交于C、D两点,圆心A的坐标为(1,0),⊙A的半径为manfen5.com 满分网,过点C作⊙A的切线交x轴于点B(-4,0).
manfen5.com 满分网
(1)求切线BC的解析式;
(2)若点P是第一象限内⊙A上的一点,过点P作⊙A的切线与直线BC相交于点G,且∠CGP=120°,求点G的坐标;
(3)向左移动⊙A(圆心A始终保持在x轴上),与直线BC交于E、F,在移动过程中是否存在点A,使△AEF是直角三角形?若存在,求出点A的坐标;若不存在,请说明理由.
查看答案
如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,∠ABC的平分线BD交AF于D,连接BF.
(1)证明:AF平分∠BAC;
(2)证明:BF=FD;
(3)若EF=4,DE=3,求AD的长.

manfen5.com 满分网 查看答案
如图,在Rt△ABC中∠ABC=90°,斜边AC的垂直平分线交BC与D点,交AC于E点,连接BE.
(1)若BE是△DEC的外接圆⊙O的切线,求∠C的大小;
(2)当AB=1,BC=2时,求△DEC外接圆的半径.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.