如图,BD是⊙O的直径,OA⊥OB,M是劣弧

上一点,过点M作⊙O的切线MP交OA的延长线于P点,MD与OA交于N点.
(1)求证:PM=PN;
(2)若BD=4,PA=

AO,过点B作BC∥MP交⊙O于C点,求BC的长.
考点分析:
相关试题推荐
如图是一个量角器和一个含30°角的直角三角板放置在一起的示意图,其中点B在半圆O的直径DE的延长线上,AB切半圆O于点F,且BC=OE.
(1)求证:DE∥CF;
(2)当OE=2时,若以O,B,F为顶点的三角形与△ABC相似,求OB的长;
(3)若OE=2,移动三角板ABC且使AB边始终与半圆O相切,直角顶点B在直径DE的延长线上移动,求出点B移动的最大距离.
查看答案
如图,已知Rt△ABC和Rt△EBC,∠B=90°.以边AC上的点O为圆心、OA为半径的⊙O与EC相切,D为切点,AD∥BC.
(1)用尺规确定并标出圆心O;(不写作法和证明,保留作图痕迹)
(2)求证:∠E=∠ACB;
(3)若AD=1,

,求BC的长.
查看答案
如图,AB是⊙O的直径,点C在AB的延长线上,CD切⊙O于点D,过点D作DF⊥AB于点E,交⊙O于点F,已知OE=1cm,DF=4cm.
(1)求⊙O的半径;
(2)求切线CD的长.
查看答案
如图所示,AB是⊙O的直径,AC切⊙O于点A,且AC=AB,CO交⊙O于点P,CO的延长线交⊙O于点F,BP的延长线交AC于点E,连接AP、AF.
求证:
(1)AF∥BE;
(2)△ACP∽△FCA;
(3)CP=AE.
查看答案
(1)如图1,直线MN与⊙O相交,且与⊙O的直径AB垂直,垂足为P,过点P的直线与⊙O交于C、D两点,直线AC交MN于点E,直线AD交MN于点F.求证:PC•PD=PE•PF.
(2)如图2,若直线MN与⊙O相离.(1)中的其余条件不变,那么(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.
(3)在图3中,直线MN与⊙O相离,且与⊙O的直径AB垂直,垂足为P.
①请按要求画出图形:画⊙O的割线PCD(PC<PD),直线BC与MN交于E,直线BD与MN交于F.
②能否仍能得到(1)中的结论?请说明理由.
查看答案