满分5 > 初中数学试题 >

如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A (-15...

如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A (-15,0),AB=25,AC=15,点C在第二象限,点P是y轴上的一个动点,连接AP,并把△AOP绕着点A逆时钟方向旋转.使边AO与AC重合.得到△ACD.
(1)求直线AC的解析式;
(2)当点P运动到点(0,5)时,求此时点D的坐标及DP的长;
(3)是否存在点P,使△OPD的面积等于5?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.manfen5.com 满分网
(1)设直线AC的解析式为:y=kx+b,由于A,C两点都在第二象限,所以k>0,即:k=tan∠A,将点A代入求出b的值即可; (2)设点D(x,y)旋转后,CD=OP=5,∠DAC=∠D,根据三角形中∠ABC的正弦,余弦值可以求出x,y即可,由两点间的距离公式求出DP的长即可; (3)根据题意设点P(0,a),分当a>0时和当-<a<0,a<-,列出等量关系求出满足条件a的值,若存在则求出点P的坐标即可. 【解析】 (1)设直线AC的解析式为:y=kx+b, ∵点A (-15,0)且C点在第二象限,△ABC是直角三角形,∠ACB=90°, ∴k>0,即k=tan∠A====, 又∵直线AC过点A-15,0), 即:0=×(-15)+b, ∴b=20, ∴直线AC的解析式为:; (2)点P运动到点(0,5)时,CD=OP=5,AD==5, 设D(x,y), 则x=-(OA-cos∠DAB×AD)=-(OA-cos∠D×AD)=-10; y=sin∠DAB×AD=×AD=AC==15; ∴D(-10,15),; (3)设P(0,a),则 当a>0时, 解得:,(舍去) 当时,. 解得,a2=-5 当时, 解得(舍去), ∴存在点P,使△OPD的面积等于5,,P2(0,-5),,.
复制答案
考点分析:
相关试题推荐
荆州市“建设社会主义新农村”工作组到某县大棚蔬菜生产基地指导菜农修建大棚种植蔬菜.通过调查得知:平均修建每公顷大棚要用支架、农膜等材料费2.7万元;购置滴灌设备,这项费用(万元)与大棚面积(公顷)的平方成正比,比例系数为0.9;另外每公顷种植蔬菜需种子、化肥、农药等开支0.3万元.每公顷蔬菜年均可卖7.5万元.
(1)基地的菜农共修建大棚x(公顷),当年收益(扣除修建和种植成本后)为y(万元),写出y关于x的函数关系式.
(2)若某菜农期望通过种植大棚蔬菜当年获得5万元收益,工作组应建议他修建多少公顷大棚.(用分数表示即可)
(3)除种子、化肥、农药投资只能当年受益外,其它设施3年内不需增加投资仍可继续使用.如果按3年计算,是否修建大棚面积越大收益越大?修建面积为多少时可以得到最大收益?请帮工作组为基地修建大棚提一项合理化建议.
查看答案
某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.
(1)今年三月份甲种电脑每台售价多少元?
(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?
(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少此时,哪种方案对公司更有利?
查看答案
manfen5.com 满分网如图1,在边长为5的正方形ABCD中,点E、F分别是BC、DC边上的点,且AE⊥EF,BE=2.
(1)求EC:CF的值;
(2)延长EF交正方形外角平分线CP于点P(如图2),试判断AE与EP的大小关系,并说明理由;
(3)在图2的AB边上是否存在一点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.
查看答案
甲乙两车先后都以60km/h的速度从M地将一批物品运往N地.两车出发后,发货站发现甲车遗漏一件物品,遂派丙车将遗漏物品送达甲车.丙车完成任务后,即沿原路返回(物品交接时间忽略不计).如图表示三辆车离M地的距离s(km)随时间t(min)变化的图象.
请根据图象进行以下探究:
信息读取
(1)说明图象中点B的实际意义;
图象理解
(2)甲车出发多长时间后被丙车追上?此时追及点距M地多远?
问题解决
(3)丙车与乙车在距离M地多远处迎面相遇?

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,已知抛物线与x交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3).
(1)求抛物线的解析式;
(2)设抛物线顶点为D,求四边形AEDB的面积;
(3)△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.