满分5 > 初中数学试题 >

在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合...

在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.令AM=x.
(1)用含x的代数式表示△MNP的面积S;
(2)当x为何值时,⊙O与直线BC相切;
(3)在动点M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?
manfen5.com 满分网
(1)由于三角形PMN和AMN的面积相当,那么可通过求三角形AMN的面积来得出三角形PMN的面积,求三角形AMN的面积可根据三角形AMN和ABC相似,根据相似比的平方等于面积比来得出三角形AMN的面积; (2)当圆O与BC相切时,O到BC的距离就是MN的一半,那么关键是求出MN的表达式,可根据三角形AMN和三角形ABC相似,得出MN的表达式,也就求出了O到BC的距离的表达式,如果过M作MQ⊥BC于Q,那么MQ就是O到BC的距离,然后在直角三角形BMQ中,用∠B的正弦函数以及BM的表达式表示出MQ,然后让这两表示MQ的含x的表达式相等,即可求出x的值; (3)要求重合部分的面积首先看P点在三角形ABC内部还是外面,因此可先得出这两种情况的分界线即当P落到BC上时,x的取值,那么P落点BC上时,MN就是三角形ABC的中位线,此时AM=2,因此可分两种情况进行讨论: ①当0<x≤2时,此时重合部分的面积就是三角形PMN的面积,三角形PMN的面积(1)中已经求出,即可的x,y的函数关系式.②当2<x<4时,如果设PM,PN交BC于E,F,那么重合部分就是四边形MEFN,可通过三角形PMN的面积-三角形PEF的面积来求重合部分的面积.不难得出PN=AM=x,而四边形BMNF又是个平行四边形,可得出FN=BM,也就有了FN的表达式,就可以求出PF的表达式,然后参照(1)的方法可求出三角形PEF的面积,即可求出四边形MEFN的面积,也就得出了y,x的函数关系式.然后根据两种情况得出的函数的性质,以及对应的自变量的取值范围求出y的最大值即可. 【解析】 (1)∵MN∥BC, ∴∠AMN=∠B,∠ANM=∠C. ∴△AMN∽△ABC. ∴,即; ∴AN=x; ∴S=S△MNP=S△AMN=•x•x=x2.(0<x<4) (2)如图2,设直线BC与⊙O相切于点D,连接AO,OD,则AO=OD=MN. 在Rt△ABC中,BC==5; 由(1)知△AMN∽△ABC, ∴,即, ∴MN=x ∴OD=x, 过M点作MQ⊥BC于Q,则MQ=OD=x, 在Rt△BMQ与Rt△BCA中,∠B是公共角, ∴△BMQ∽△BCA, ∴, ∴BM=x,AB=BM+MA=x+x=4 ∴x=, ∴当x=时,⊙O与直线BC相切; (3)随点M的运动,当P点落在直线BC上时,连接AP,则O点为AP的中点. ∵MN∥BC, ∴∠AMN=∠B,∠AOM=∠APB, ∴△AMO∽△ABP, ∴, ∵AM=MB=2, 故以下分两种情况讨论: ①当0<x≤2时,y=S△PMN=x2, ∴当x=2时,y最大=×4=, ②当2<x<4时,设PM,PN分别交BC于E,F, ∵四边形AMPN是矩形, ∴PN∥AM,PN=AM=x, 又∵MN∥BC, ∴四边形MBFN是平行四边形; ∴FN=BM=4-x, ∴PF=x-(4-x)=2x-4, 又∵△PEF∽△ACB, ∴, ∴S△PEF=(x-2)2; y=S△MNP-S△PEF=x2-(x-2)2=-x2+6x-6, 当2<x<4时,y=-x2+6x-6=-(x-)2+2, ∴当x=时,满足2<x<4,y最大=2. 综上所述,当x=时,y值最大,最大值是2.
复制答案
考点分析:
相关试题推荐
某通讯器材公司销售一种市场需求较大的新型通讯产品.已知每件产品的进价为40元,每年销售该种产品的总开支(不含进价)总计120万元.在销售过程中发现,年销售量y(万件)与销售单价x(元)之间存在着如图所示的一次函数关系.
(1)求y关于x的函数关系式;
(2)试写出该公司销售该种产品的年获利z(万元)关于销售单价x(元)的函数关系式(年获利=年销售额一年销售产品总进价一年总开支).当销售单价x为何值时,年获利最大并求这个最大值;
(3)若公司希望该种产品一年的销售获利不低于40万元,借助(2)中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少元?

manfen5.com 满分网 查看答案
如图,宜昌西陵长江大桥属于抛物线形悬索桥,桥面(视为水平的)与主悬钢索之间用垂直钢拉索连接.桥两端主塔塔顶的海拔高度均是187.5米,桥的单孔跨度(即两主塔之间的距离)900米,这里水面的海拔高度是74米.若过主塔塔顶的主悬钢索(视为抛物线)最低点离桥面(视为直线)的高度为0.5米,桥面离水面的高度为19米.请你计算距离桥两端主塔100米处垂直钢拉索的长.(结果精确到0.1米)
manfen5.com 满分网
查看答案
已知二次函数y=2x2-4x-6,
(1)求证:该抛物线与x轴一定有两个交点;
(2)若该抛物线与x轴的两个交点分别为A、B,且它的顶点为P,求△ABP的面积.
查看答案
当x=4时,函数y=ax2+bx+c的最小值为-8,抛物线过点(6,0).
求:(1)顶点坐标和对称轴;
(2)函数的表达式;
(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.
查看答案
已知二次函数y=x2-6x+8.求:
(1)抛物线与x轴和y轴相交的交点坐标;
(2)抛物线的顶点坐标;
(3)画出此抛物线图象,利用图象回答下列问题:
①方程x2-6x+8=0的解是什么?
②x取什么值时,函数值大于0?
③x取什么值时,函数值小于0?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.