满分5 > 初中数学试题 >

如图1,点C将线段AB分成两部分,如果,那么称点C为线段AB的黄金分割点. (1...

如图1,点C将线段AB分成两部分,如果manfen5.com 满分网,那么称点C为线段AB的黄金分割点.
(1)某研究小组在进行课题学习时,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2,如果manfen5.com 满分网,那么称直线l为该图形的黄金分割线.(如图2)manfen5.com 满分网
问题.试在图3的梯形中画出至少五条黄金分割线,并说明理由.
(2)类似“黄金分割线”得“黄金分割面”定义:截面a将一个体积为V的图形分成体积为V1、V2的两个图形,且manfen5.com 满分网,则称直线a为该图形的黄金分割面.
问题:如图4,长方体ABCD-EFGH中,T是线段AB上的黄金分割点,证明经过T点且平行于平面BCGF的截面QRST是长方体的黄金分割面.

manfen5.com 满分网
(1)如图,先在梯形的中位线EF上找一个黄金分割点G,过点G作一条直线L交AD于点M,交BC于N,则MN就是梯形的黄金分割线. (2)根据AT:AB=TB:AT,进而推出S矩形QRST=S矩形BCGF因为AT×S矩形QRST:AB×S矩形BCGF=TB×S矩形ADHE:AT×S矩形QRST从而不难求得截面QRST是长方体的黄金分割面. 【解析】 (1)如图,先在梯形的中位线EF上找一个黄金分割点G,过点G作一条直线L交AD于点M,交BC于N,则MN就是梯形的黄金分割线. ∵EG:EF=GF:EG, ∴EG×h:EF×h=GF×h:EG×h, ∵S梯形ABNM=EG×h,S梯形MNCD=GF×h,S梯形ABCD=EF×h(h是梯形的高), ∴S梯形ABNM:S梯形ABCD=S梯形NMCD:S梯形ABNM, ∵直线L是过G的任意一条与AD,BC都相交的直线, ∴符合题意的黄金分割线有无穷多条. (2)∵AT:AB=TB:AT, ∴S矩形QRST=S矩形BCGF, ∵AT×S矩形QRST:AB×S矩形BCGF=TB×S矩形ADHE:AT×S矩形QRST, 即截面QRST将体积为V的长方体,分成左右两块体积分别是V1,V2, ∴V1:V=V2:V1, ∴截面QRST是长方体的黄金分割面.
复制答案
考点分析:
相关试题推荐
在“测量物体的高度”活动中,某数学兴趣小组的4名同学选择了测量学校里的四棵树的高度.在同一时刻的阳光下,他们分别做了以下工作:
小芳:测得一根长为1米的竹竿的影长为0.8米,甲树的影长为4.08米(如图1).
小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图2),墙壁上的影长为1.2米,落在地面上的影长为2.4米.
小丽:测量的丙树的影子除落在地面上外,还有一部分落在教学楼的第一级台阶上(如图3),测得此影子长为0.2米,一级台阶高为0.3米,落在地面上的影长为4.4米.
小明:测得丁树落在地面上的影长为2.4米,落在坡面上影长为3.2米(如图4).身高是1.6m的小明站在坡面上,影子也都落坡面上,小芳测得他的影长为2m.
manfen5.com 满分网
(1)在横线上直接填写甲树的高度为______米.
(2)求出乙树的高度(画出示意图).
(3)请选择丙树的高度为(C )
A、6.5米B、5.75米C、6.05米D、7.25米
(4)你能计算出丁树的高度吗?试试看.
查看答案
如图1,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,点O是AC边上一点,连接BO交AD于F,OE⊥OB交BC边于点E.
(1)求证:△ABF∽△COE;
(2)当O为AC的中点,manfen5.com 满分网时,如图2,求manfen5.com 满分网的值;
(3)当O为AC边中点,manfen5.com 满分网时,请直接写出manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
在Rt△ABC中,∠BAC=90°,AB=AC=4cm,实验操作:把一等腰直角三角尺45°角的顶点(记为点D),放在BC边上滑动(不与B,C重合),让该角的一边始终过点A,另一边交AC于点E,选取运动过程中的两个瞬间,用量角器分别测出∠BDA与∠CED的大小,并填入下表:
 ∠BDA∠CED
第一次测量结果  
第二次测量结果  
探索:(1)观察实验结果,猜想∠BDA与∠CED的大小有何关系?并证明你的结论;
(2)设BD=x,AE=y,试求出y关于x的函数关系式,并写出自变量x的取值范围;
(3)当点D在BC边上滑动时,△ADE能否成为等腰三角形?若能,求出点D的位置;若不能,请说明理由.(图1供实验操作用,图2备用)
manfen5.com 满分网
查看答案
如图,在矩形ABCD中,点E、F分别在边AD、DC上,△ABE∽△DEF,AB=6,AE=9,DE=2,则EF的长为   
manfen5.com 满分网 查看答案
已知:Rt△OAB在直角坐标系中的位置如图所示,P(3,4)为OB的中点,点C为折线OAB上的动点,线段PC把Rt△OAB分割成两部分.
问:点C在什么位置时,分割得到的三角形与Rt△OAB相似(注:在图上画出所有符合要求的线段PC,并求出相应的点C的坐标).

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.