满分5 > 初中数学试题 >

⊙O的半径为8,圆心O到直线l的距离为4,则直线l与⊙O的位置关系是 A.相切 ...

⊙O的半径为8,圆心O到直线l的距离为4,则直线l与⊙O的位置关系是

A.相切       B.相交      C.相离      D.不能确定

 

B 【解析】 试题分析:根据直线与圆的位置关系来判定:①直线l和⊙O相交,则d<r;②直线l和⊙O相切,则d=r;③直线l和⊙O相离,则d>r(d为直线与圆的距离,r为圆的半径)。因此, ∵⊙O的半径为8,圆心O到直线L的距离为4, ∵8>4,即:d<r。 ∴直线L与⊙O的位置关系是相交。故选B。
复制答案
考点分析:
相关试题推荐

如图,在下列条件中,能判断AD∥BC的是

满分5 manfen5.com

A.∠DAC=∠BCA       B.∠DCB+∠ABC=180°      C.∠ABD=∠BDC      D.∠BAC=∠ACD

 

查看答案

如图,在平面直角坐标系中,有一条直线l:满分5 manfen5.com与x轴、y轴分别交于点M、N,一个高为3的等边三角形ABC,边BC在x轴上,将此三角形沿着x轴的正方向平移.

满分5 manfen5.com

(1)在平移过程中,得到△A1B1C1,此时顶点A1恰落在直线l上,写出A1点的坐标      

(2)继续向右平移,得到△A2B2C2,此时它的外心P恰好落在直线l上,求P点的坐标;

(3)在直线l上是否存在这样的点,与(2)中的A2、B2、C2任意两点能同时构成三个等腰三角形?如果存在,求出点的坐标;如果不存在,说明理由.

 

查看答案

在△ABC中,BC=a,AC=b,AB=c,设c为最长边,当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).

(1)当△ABC三边分别为6、8、9时,△ABC为      三角形;当△ABC三边分别为6、8、11时,△ABC为      三角形.

(2)猜想,当a2+b2      c2时,△ABC为锐角三角形;当a2+b2      c2时,△ABC为钝角三角形.

(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.

 

查看答案

如图,抛物线y=ax2+b与x轴交于点A、B,且A点的坐标为(1,0),与y轴交于点C(0,1).

满分5 manfen5.com

(1)求抛物线的解析式,并求出点B坐标;

(2)过点B作BD∥CA交抛物线于点D,连接BC、CA、AD,求四边形ABCD的周长;(结果保留根号)

(3)在x轴上方的抛物线上是否存在点P,过点P作PE垂直于x轴,垂足为点E,使以B、P、E为顶点的三角形与△CBD相似?若存在请求出P点的坐标;若不存在,请说明理由.

 

查看答案

如图,小明为了测量小山顶的塔高,他在A处测得塔尖D的仰角为45°,再沿AC方向前进73.2米到达山脚B处,测得塔尖D的仰角为60°,塔底E的仰角为30°,求塔高.(精确到0.1米,满分5 manfen5.com≈1.732)

满分5 manfen5.com

 

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.