满分5 > 初中数学试题 >

如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连接DP交AC于点...

如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连接DP交AC于点Q.
(1)试证明:无论点P运动到AB上何处时,都有△ADQ≌△ABQ;
(2)当点P在AB上运动到什么位置时,△ADQ的面积是正方形ABCD面积的manfen5.com 满分网
(3)若点P从点A运动到点B,再继续在BC上运动到点C,在整个运动过程中,当点P运动到什么位置时,△ADQ恰为等腰三角形.

manfen5.com 满分网
(1)可由SAS求得△ADQ≌△ABQ; (2)过点Q作QE⊥AD于E,QF⊥AB于F,则QE=QF,若△ADQ的面积是正方形ABCD面积的,则有S△ADQ=AD•QE=S正方形ABCD,求得OE的值,再利用△DEQ∽△DAP有解得AP值; (3)点P运动时,△ADQ恰为等腰三角形的情况有三种:有QD=QA或DA=DQ或AQ=AD.由正方形的性质知,①当点P运动到与点B重合时,QD=QA,此时△ADQ是等腰三角形,②当点P与点C重合时,点Q与点C也重合,此时DA=DQ,△ADQ是等腰三角形,③当AD=AQ=4时,有CP=CQ,CP=AC-AD而由正方形的对角线的性质得到CP的值. (1)证明:在正方形ABCD中, 无论点P运动到AB上何处时,都有 AD=AB,∠DAQ=∠BAQ,AQ=AQ, ∴△ADQ≌△ABQ; (2)解法一:△ADQ的面积恰好是正方形ABCD面积的时, 过点Q作QE⊥AD于E,QF⊥AB于F,则QE=QF, ∵在边长为4的正方形ABCD中, ∴S正方形ABCD=16, ∴AD×QE=S正方形ABCD=×16=, ∴QE=, ∵EQ∥AP, ∴△DEQ∽△DAP, ∴,即=, 解得AP=2, ∴AP=2时,△ADQ的面积是正方形ABCD面积的; 解法二:以A为原点建立如图所示的直角坐标系,过点Q作QE⊥y轴于点E,QF⊥x轴于点F. AD×QE=S正方形ABCD=×16=, ∴QE=, ∵点Q在正方形对角线AC上, ∴Q点的坐标为(,), ∴过点D(0,4),Q(,)两点的函数关系式为:y=-2x+4, 当y=0时,x=2, ∴P点的坐标为(2,0), ∴AP=2时,即当点P运动到AB中点位置时,△ADQ的面积是正方形ABCD面积的; (3)【解析】 若△ADQ是等腰三角形,则有QD=QA或DA=DQ或AQ=AD, ①当AD=DQ时,则∠DQA=∠DAQ=45° ∴∠ADQ=90°,P为C点, ②当AQ=DQ时,则∠DAQ=∠ADQ=45°, ∴∠AQD=90°,P为B, ③AD=AQ(P在BC上), ∴CQ=AC-AQ=BC-BC=(-1)BC ∵AD∥BC ∴=,即可得==1, ∴CP=CQ=(-1)BC=4(-1) 综上,P在B点,C点,或在CP=4(-1)处,△ADQ是等腰三角形.
复制答案
考点分析:
相关试题推荐
如图,已知一矩形ABCD,若把△ABE沿折痕BE向上翻折,A点恰好落在DC上,设此点为F,且这时AE:ED=5:3,BE=5manfen5.com 满分网,这个矩形的长宽各是多少?

manfen5.com 满分网 查看答案
为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2010年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.
(1)求每年市政府投资的增长率;
(2)若这两年内的建设成本不变,求到2012年底共建设了多少万平方米廉租房.
查看答案
某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,如果这种商品每件的销售价每提高0.5元其销售量就减少10件,问应将每件售价定为多少元时,才能使每天利润为640元?
查看答案
关于x的一元二次方程x2-3x-k=0有两个不相等的实数根.
(1)求k的取值范围;
(2)请选择一个k的负整数值,并求出方程的根.
查看答案
已知:实数a,b在数轴上的位置如图所示,化简:manfen5.com 满分网
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.