满分5 > 初中数学试题 >

在直角梯形OABC中,CB∥OA,∠COA=90°,CB=3,OA=6,BA=....

manfen5.com 满分网在直角梯形OABC中,CB∥OA,∠COA=90°,CB=3,OA=6,BA=manfen5.com 满分网.分别以OA、OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.
(1)求点B的坐标;
(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F,求直线DE的解析式;
(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一个点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.
(1)过B作BH⊥x轴于H,则OH=BC=3,进而可求得AH的长,在Rt△ABH中,根据勾股定理即可求出BH的长,由此可得B点坐标; (2)过E作EG⊥x轴于G,易得△OGE∽△OHB,根据相似三角形的对应边成比例可求出EG、OG的长,即可得到E点的坐标,进而可用待定系数法求出直线DE的解析式; (3)此题应分情况讨论: ①以OD、ON为边的菱形ODMN,根据直线DE的解析式可求出F点的坐标,即可得到OF的长;过M作MP⊥y轴于P,通过构建的相似三角形可求出M点的坐标,将M点向下平移OD个单位即可得到N点的坐标; ②以OD、OM为边的菱形ODNM,此时MN∥y轴,延长NM交x轴于P,可根据直线DE的解析式用未知数设出M点的坐标,进而可在Rt△OMP中,由勾股定理求出M点的坐标,将M点向上平移OD个单位即可得到N点的坐标; ③以OD为对角线的菱形OMCN,根据菱形对角线互相垂直平分的性质即可求得M、N的纵坐标,将M点纵坐标代入直线DE的解析式中即可求出M点坐标,而M、N关于y轴对称,由此可得到N点的坐标. 【解析】 (1)作BH⊥x轴于点H,则四边形OHBC为矩形, ∴OH=CB=3,(1分) ∴AH=OA-OH=6-3=3, 在Rt△ABH中,BH===6,(2分) ∴点B的坐标为(3,6);(3分) (2)作EG⊥x轴于点G,则EG∥BH, ∴△OEG∽△OBH,(4分) ∴, 又∵OE=2EB, ∴, ∴=, ∴OG=2,EG=4, ∴点E的坐标为(2,4),(5分) 又∵点D的坐标为(0,5), 设直线DE的解析式为y=kx+b, 则, 解得k=-,b=5, ∴直线DE的解析式为:y=-x+5;(7分) (3)答:存在(8分) ①如图1,当OD=DM=MN=NO=5时,四边形ODMN为菱形.作MP⊥y轴于点P,则MP∥x轴,∴△MPD∽△FOD ∴, 又∵当y=0时,-x+5=0, 解得x=10, ∴F点的坐标为(10,0), ∴OF=10, 在Rt△ODF中,FD===5, ∴, ∴MP=2,PD=, ∴点M的坐标为(-2,5+), ∴点N的坐标为(-2,);(10分) ②如图2,当OD=DN=NM=MO=5时,四边形ODNM为菱形.延长NM交x轴于点P,则MP⊥x轴. ∵点M在直线y=-x+5上, ∴设M点坐标为(a,-a+5), 在Rt△OPM中,OP2+PM2=OM2, ∴a2+(-a+5)2=52, 解得:a1=4,a2=0(舍去), ∴点M的坐标为(4,3), ∴点N的坐标为(4,8);(12分) ③如图3,当OM=MD=DN=NO时,四边形OMDN为菱形,连接NM,交OD于点P,则NM与OD互相垂直平分, ∴yM=yN=OP=, ∴-xM+5=, ∴xM=5, ∴xN=-xM=-5, ∴点N的坐标为(-5,),(14分) 综上所述,x轴上方的点N有三个,分别为N1(-2,),N2(4,8),N3(-5,). (其它解法可参照给分)
复制答案
考点分析:
相关试题推荐
如图,在△ABC中,AD⊥BC于点D,AB=AC,过点B作射线BP交AD,AC分别于E,F两点,与过点C平行于AB的直线交于点P.
(1)求证:EB2=EF•EP;
(2)若过点B的射线交AD,AC的延长线分别于E,F两点,与过点C的平行于AB的直线交于点P,则结论(1)是否成立?若成立,请说明理由.

manfen5.com 满分网 查看答案
小沈准备给小陈打电话,由于保管不善,电话本上的小陈手机号码中,有两个数字已模糊不清.如果用x、y表示这两个看不清的数字,那么小陈的手机号码为139x370y580(手机号码由11个数字组成),小沈记得这11个数字之和是20的整数倍.
(1)求x+y的值;
(2)求小沈一次拨对小陈手机号码的概率.
查看答案
如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1,取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分,取△A1B1C1和△D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2,如图(3)中阴影部分,如此下去…,则正六角星形A4F4B4D4C4E4的面积为   
manfen5.com 满分网 查看答案
如图,△AOB为正三角形,点B的坐标为(2,0),过点C(-2,0)作直线l交AO于D,交AB于E,且使△ADE和△DCO的面积相等,则直线l的解析式为   
manfen5.com 满分网 查看答案
如图,把△PQR沿着PQ的方向平移到△P′Q′R′的位置,它们重叠部分的面积是△PQR面积的一半,若PQ=manfen5.com 满分网,则此三角形移动的距离PP′=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.