满分5 > 初中数学试题 >

菱形ABCD中,∠B=60°,点E在边BC上,点F在边CD上. (1)如图1,若...

菱形ABCD中,∠B=60°,点E在边BC上,点F在边CD上.
(1)如图1,若E是BC的中点,∠AEF=60°,求证:BE=DF;
(2)如图2,若∠EAF=60°,求证:△AEF是等边三角形.
manfen5.com 满分网
(1)首先连接AC,由菱形ABCD中,∠B=60°,根据菱形的性质,易得△ABC是等边三角形,又由三线合一,可证得AE⊥BC,继而求得∠FEC=∠CFE,即可得EC=CF,继而证得BE=DF; (2)首先连接AC,可得△ABC是等边三角形,即可得AB=AC,以求得∠ACF=∠B=60°,然后利用平行线与三角形外角的性质,可求得∠AEB=∠AFC,证得△AEB≌△AFC,即可得AE=AF,证得:△AEF是等边三角形. 证明:(1)连接AC, ∵菱形ABCD中,∠B=60°, ∴AB=BC=CD,∠C=180°-∠B=120°, ∴△ABC是等边三角形, ∵E是BC的中点, ∴AE⊥BC, ∵∠AEF=60°, ∴∠FEC=90°-∠AEF=30°, ∴∠CFE=180°-∠FEC-∠C=180°-30°-120°=30°, ∴∠FEC=∠CFE, ∴EC=CF, ∴BE=DF; (2)连接AC, ∵四边形ABCD是菱形,∠B=60° ∴AB=BC,∠D=∠B=60°,∠ACB=∠ACF, ∴△ABC是等边三角形, ∴AB=AC,∠ACB=60°, ∴∠B=∠ACF=60°, ∵AD∥BC, ∴∠AEB=∠EAD=∠EAF+∠FAD=60°+∠FAD, ∠AFC=∠D+∠FAD=60°+∠FAD, ∴∠AEB=∠AFC, 在△ABE和△ACF中, ∴△ABE≌△ACF(AAS), ∴AE=AF, ∵∠EAF=60°, ∴△AEF是等边三角形.
复制答案
考点分析:
相关试题推荐
如图,四边形ABCD中,AC=6,BD=8且AC⊥BD.顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1;再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2…如此进行下去得到四边形AnBnCnDn
(1)证明:四边形A1B1C1D1是矩形;
(2)写出四边形A1B1C1D1和四边形A2B2C2D2的面积;
(3)写出四边形AnBnCnDn的面积;
(4)求四边形A5B5C5D5的周长.

manfen5.com 满分网 查看答案
如图,在梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD交于点O,AC⊥BD,E、F、G、H分别是AB、BC、CD、DA的中点.
(1)求证:四边形EFGH是正方形;
(2)若AD=2,BC=4,求四边形EFGH的面积.

manfen5.com 满分网 查看答案
如图,四边形ABCD是菱形,CE⊥AB交AB延长线于E,CF⊥AD交AD延长线于F,请猜想,CE和CF的大小有什么关系?并证明你的猜想.

manfen5.com 满分网 查看答案
如图,△ABC中,AD为∠BAC的平分线,点F是BC的中点,BP⊥AD于D,AC=12,AB=8,求PF的长.

manfen5.com 满分网 查看答案
如图,在矩形ABCD中,E为AD的中点.
求证:∠EBC=∠ECB.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.