如图,二次函数y=ax
2+bx+c(a≠0)的图象与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C,且二次函数的最小值为-4,
(1)求二次函数的解析式;
(2)若M(m,n)(0<m<3)为此抛物线上的一个动点,连接MC、MB,试求当m为何值时,△MBC的面积最大?并求出这个最大值;
(3)已知P为抛物线上的任意一点,过点P作PQ∥x轴交抛物线于另一点Q(点P在点Q的左侧),分别作PE⊥x轴,QF⊥x轴,垂足分别为E、F,若四边形PQFE为正方形,求点P的坐标.
考点分析:
相关试题推荐
商场某种商品的进价为每件100元,当售价定为每件150元时平均每天可销售30件.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.设每件商品降价x元(x为整数).据此规律,请回答:
(1)商场日销售量增加______件,每件商品盈利______元(用含x的代数式表示);
(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?
(3)若你是该商场经营者,该如何设计销售方案,才能使该商场日盈利最大?说明理由.
查看答案
如图,在平面直角坐标系中,⊙M与x轴交于A,B两点,AC是⊙M的直径,过点C的直线交x轴于点D,连接BC,已知点M的坐标为

,直线CD的函数解析式为y=-

x+5

.
(1)求点D的坐标和BC的长;
(2)求点C的坐标和⊙M的半径;
(3)求证:CD是⊙M的切线.
查看答案
如图,在四边形ABCD中,已知AB与CD不平行,∠ABD=∠ACD.请你添加一个条件,使得加上这个条件后能够推出AB=CD且AD∥BC.
(1)添加的条件是:______;
(2)试说明:AB=CD;
(3)试说明:AD∥BC.
查看答案
已知:如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°.
(1)求∠EBC的度数;
(2)若BE=

,求弧AE的长;
(3)求证:BD=CD.
查看答案
如图,在矩形ABCD中,点E在AD边上,AE>DE,BE=BC,点O是线段CE的中点.
(1)试说明CE平分∠BED;
(2)若AB=3,BC=5,求BO的长;
(3)延长BO交直线AD于点F,连接CF,画出图形,试说明四边形BCFE是菱形.
查看答案