满分5 > 初中数学试题 >

如图,在平面直角坐标系中,⊙M与x轴交于A,B两点,AC是⊙M的直径,过点C的直...

如图,在平面直角坐标系中,⊙M与x轴交于A,B两点,AC是⊙M的直径,过点C的直线交x轴于点D,连接BC,已知点M的坐标为manfen5.com 满分网,直线CD的函数解析式为y=-manfen5.com 满分网x+5manfen5.com 满分网
(1)求点D的坐标和BC的长;
(2)求点C的坐标和⊙M的半径;
(3)求证:CD是⊙M的切线.

manfen5.com 满分网
(1)因为点M的坐标为,直线CD的函数解析式为y=-x+5,D在x轴上,可求出OM=,D(5,0),又因过圆心M的直径⊥AB,AC是直径,利用垂径定理可得OA=OB,AM=MC,∠ABC=90°,利用三角形的中位线可得OM=BC,BC=2; (2)因为BC=2,所以可设C(x,2),利用直线CD的函数解析式为y=-x+5.可得到y=-x+5=2,即求出C(3,2),利用勾股定理可得AC==,即⊙M的半径为2; (3)求出BD=5-3=2,BC=,CD==4,AC=4,AD=8,CD=4,,可得△ACD∽△CBD, 所以∠CBD=∠ACD=90°,CD是⊙M的切线. (1)【解析】 ∵点M的坐标为,直线CD的函数解析式为y=-x+5,D在x轴上, ∴OM=,D(5,0); ∵过圆心M的直径⊥AB,AC是直径, ∴OA=OB,AM=MC,∠ABC=90°, ∴OM=BC, ∴BC=2. (2)【解析】 ∵BC=2, ∴设C(x,2); ∵直线CD的函数解析式为y=-x+5, ∴y=-x+5=2, ∴x=3,即C(3,2), ∵CB⊥x轴,OB=3, ∴AO=3,AB=6,AC==, 即⊙M的半径为2. (3)证明:∵BD=5-3=2,BC=,CD==4, AC=4,AD=8,CD=4, ∴, ∴△ACD∽△CBD, ∴∠CBD=∠ACD=90°; ∵AC是直径, ∴CD是⊙M的切线.
复制答案
考点分析:
相关试题推荐
如图,在四边形ABCD中,已知AB与CD不平行,∠ABD=∠ACD.请你添加一个条件,使得加上这个条件后能够推出AB=CD且AD∥BC.
(1)添加的条件是:______
(2)试说明:AB=CD;
(3)试说明:AD∥BC.

manfen5.com 满分网 查看答案
已知:如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°.
(1)求∠EBC的度数;
(2)若BE=manfen5.com 满分网,求弧AE的长;
(3)求证:BD=CD.

manfen5.com 满分网 查看答案
如图,在矩形ABCD中,点E在AD边上,AE>DE,BE=BC,点O是线段CE的中点.
(1)试说明CE平分∠BED;
(2)若AB=3,BC=5,求BO的长;
(3)延长BO交直线AD于点F,连接CF,画出图形,试说明四边形BCFE是菱形.

manfen5.com 满分网 查看答案
如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路l,AB是A到l的小路,现新修一条路AC到公路l,小明测量出∠ACD=30°,∠ABD=45°,BC=50m,请你帮小明计算他家到公路l的距离AD的长度(精确到0.1m;参考数据:manfen5.com 满分网≈1.414,manfen5.com 满分网≈1.732)

manfen5.com 满分网 查看答案
解下列一元二次方程:
(1)(x+2)2-1=0               
(2)2x2-4x-1=0.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.