满分5 > 初中数学试题 >

(1)如图1,在△ABC中,点D、E、Q分别在AB、AC、BC上,且DE∥BC,...

(1)如图1,在△ABC中,点D、E、Q分别在AB、AC、BC上,且DE∥BC,AQ交DE于点P,求证:manfen5.com 满分网=manfen5.com 满分网
(2)如图,△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG,AF分别交DE于M,N两点.
①如图2,若AB=AC=1,直接写出MN的长;
②如图3,求证:MN2=DM•EN.
manfen5.com 满分网
(1)可证明△ADP∽△ABQ,△ACQ∽△ADP,从而得出=; (2)①根据三角形的面积公式求出BC边上的高,根据△ADE∽△ABC,求出正方形DEFG的边长,根据等于高之比即可求出MN; ②可得出△BGD∽△EFC,则DG•EF=CF•BG;又由DG=GF=EF,得GF2=CF•BG,再根据(1)==,从而得出答案. (1)证明:在△ABQ和△ADP中, ∵DP∥BQ, ∴△ADP∽△ABQ, ∴=, 同理在△ACQ和△APE中, =, ∴=. (2)①作AQ⊥BC于点Q. ∵BC边上的高AQ=, ∵DE=DG=GF=EF=BG=CF ∴DE:BC=1:3 又∵DE∥BC, ∴AD:AB=1:3, ∴AD=,DE=, ∵DE边上的高为,MN:GF=:, ∴MN:=:, ∴MN=. 故答案为:. ②证明:∵∠B+∠C=90°∠CEF+∠C=90°, ∴∠B=∠CEF, 又∵∠BGD=∠EFC, ∴△BGD∽△EFC, ∴=, ∴DG•EF=CF•BG, 又∵DG=GF=EF, ∴GF2=CF•BG, 由(1)得==, ∴×=•, ∴()2=•, ∵GF2=CF•BG, ∴MN2=DM•EN.
复制答案
考点分析:
相关试题推荐
若关于x的一元二次方程x2-2(2-k)x+k2+12=0有实数根α、β.
(1)求实数k的取值范围;
(2)设manfen5.com 满分网,求t的最小值.
查看答案
随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭,成为居民消费新的增长点.据某市交通部门统计,2007年底全市汽车拥有量为150万辆,而截止到2009年底,全市的汽车拥有量已达216万辆.
(1)求2007年底至2009年底该市汽车拥有量的年平均增长率;
(2)为保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到2011年底全市汽车拥有量不超过231.96万辆;另据估计,从2010年初起,该市此后每年报废的汽车数量是上年底汽车拥有量的10%.假定每年新增汽车数量相同,请你计算出该市每年新增汽车数量最多不能超过多少万辆?
查看答案
如图,边长为3的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转45°,则这两个正方形重叠部分的面积是多少?

manfen5.com 满分网 查看答案
已知m,n是方程x2-2x-1=0的两根,且(3m2-6m+a)(5n2-10n-8)=6,求a的值.
查看答案
解方程:(1)x2-2x-1=0.                  
(2)(3x-2)2=(4-x)2
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.