(1)先求出∠BPC的度数是360°-60°×2-90°=150°,再根据对称性得到△BPC为等腰三角形,∠PBC即可求出;
(2)根据题意:有△APD是等腰直角三角形;△PBC是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD是轴对称图形,进而可得②③④正确.
【解析】
∵△ABP≌△CDP,
∴AB=CD,AP=DP,BP=CP.
又∵△ABP与△CDP是两个等边三角形,
∴∠PAB=∠PBA=∠APB=60°.
①根据题意,∠BPC=360°-60°×2-90°=150°
∵BP=PC,
∴∠PBC=(180°-150°)÷2=15°,
故本选项正确;
②∵∠ABC=60°+15°=75°,
∵AP=DP,
∴∠DAP=45°,
∵∠BAP=60°,
∴∠BAD=∠BAP+∠DAP=60°+45°=105°,
∴∠BAD+∠ABC=105°+75°=180°,
∴AD∥BC;
故本选项正确;
③延长CP交于AB于点O.
∠APO=180°-(∠APD+∠CPD)=180°-(90°+60°)=180°-150°=30°,
∵∠PAB=60°,
∴∠AOP=30°+60°=90°,
故本选项正确;
④根据题意可得四边形ABCD是轴对称图形,
故本选项正确.
综上所述,以上四个命题都正确.
故选D.