满分5 > 初中数学试题 >

如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,且A点坐标为(-3,...

如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,且A点坐标为(-3,0),经过B点的直线交抛物线于点D(-2,-3).
(1)求抛物线的解析式和直线BD解析式;
(2)过x轴上点E(a,0)(E点在B点的右侧)作直线EF∥BD,交抛物线于点F,是否存在实数a使四边形BDFE是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.

manfen5.com 满分网
(1)把A、D两点的坐标代入二次函数解析式可得二次函数解析式中b,c的值,让二次函数的y等于0求得抛物线与x轴的交点B,把B、D两点代入一次函数解析式可得直线BD的解析式; (2)得到用a表示的EF的解析式,跟二次函数解析式组成方程组,得到含y的一元二次方程,进而根据y=-3求得合适的a的值即可. 【解析】 (1)将A(-3,0),D(-2,-3)的坐标代入y=x2+bx+c得, , 解得:, ∴y=x2+2x-3     由x2+2x-3=0, 得:x1=-3,x2=1, ∴B的坐标是(1,0), 设直线BD的解析式为y=kx+b,则, 解得:, ∴直线BD的解析式为y=x-1;   (2)∵直线BD的解析式是y=x-1,且EF∥BD, ∴直线EF的解析式为:y=x-a, 若四边形BDFE是平行四边形, 则DF∥x轴, ∴D、F两点的纵坐标相等,即点F的纵坐标为-3. 由,得 y2+(2a+1)y+a2+2a-3=0, 解得:y=. 令=-3, 解得:a1=1,a2=3. 当a=1时,E点的坐标(1,0),这与B点重合,舍去; ∴当a=3时,E点的坐标(3,0),符合题意. ∴存在实数a=3,使四边形BDFE是平行四边形.
复制答案
考点分析:
相关试题推荐
为了顺应市场要求,某市电子玩具制造公司技术部研制开发一种新产品,年初上市后,公司经历了从亏损到盈利的过程.下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s和t之间的关系).根据图象提供的信息,解答下列问题:
(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;
(2)求截止到几月末公司累积利润可达到6万元?
(3)求第9个月公司所获利润是多少万元?

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,直线manfen5.com 满分网与双曲线manfen5.com 满分网在第一象限交于点A,与x轴交于点C,AB⊥x轴,垂足为B,且S△AOB=1.求:
(1)求两个函数解析式;
(2)求△ABC的面积.

manfen5.com 满分网 查看答案
已知二次函数的图象经过点(0,3),顶点坐标为(1,4),
(1)求这个二次函数的解析式;
(2)求图象与x轴交点A、B两点的坐标;
(3)图象与y轴交点为点C,求三角形ABC的面积.
查看答案
反比例函数manfen5.com 满分网经过点(1,2).
(1)求k的值;
(2)若反比例函数的图象经过点P(a,a-1),求a的值.
查看答案
由于过度采伐森林和破坏植被,使我国某些地区多次受到沙尘暴的侵袭.近来A市气象局测得沙尘暴中心在A市正东方向400km的B处,正向西北方向转移,如图所示,距沙尘暴中心300km的范围内将受到影响,则A市是否会受到这次沙尘暴的影响?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.