满分5 > 初中数学试题 >

(1)如图1,圆内接△ABC中,AB=BC=CA,OD、OE为⊙O的半径,OD⊥...

(1)如图1,圆内接△ABC中,AB=BC=CA,OD、OE为⊙O的半径,OD⊥BC于点F,OE⊥AC于点G,
求证:阴影部分四边形OFCG的面积是△ABC的面积的manfen5.com 满分网
(2)如图2,若∠DOE保持120°角度不变,
求证:当∠DOE绕着O点旋转时,由两条半径和△ABC的两条边围成的图形(图中阴影部分)面积始终是△ABC的面积的manfen5.com 满分网

manfen5.com 满分网
(1)本题要依靠辅助线的帮助.连接OA,OC,证明Rt△OFC≌Rt△OGC≌Rt△OGA后求得S△OAC=S△ABC,易证SOFCG=S△ABC. (2)本题有多种解法.连接OA,OB和OC,证明△AOC≌△COB≌△BOA,求出∠AOC以及∠DOE之间的关系即可. 证明:(1)如图1,连接OA,OC; 因为点O是等边三角形ABC的外心, 所以Rt△OFC≌Rt△OGC≌Rt△OGA, S四边形OFCG=2S△OFC=S△OAC, 因为S△OAC=S△ABC, 所以S四边形OFCG=S△ABC. (2)证法一: 连接OA,OB和OC,则 △AOC≌△COB≌△BOA,∠1=∠2; 设OD交BC于点F,OE交AC于点G, ∠AOC=∠3+∠4=120°,∠DOE=∠5+∠4=120°, ∴∠3=∠5; 在△OAG和△OCF中 , ∴△OAG≌△OCF, ∴S△OAG=S△OCF, ∴S△OAG+S△OGC=S△OCF+S△OGC, 即S四边形OFCG=S△OAC=S△ABC; 证法二: 设OD交BC于点F,OE交AC于点G; 作OH⊥BC,OK⊥AC,垂足分别为H、K; 在四边形HOKC中,∠OHC=∠OKC=90°,∠C=60°, ∴∠HOK=360°-90°-90°-60°=120°, 即∠1+∠2=120度; 又∵∠GOF=∠2+∠3=120°, ∴∠1=∠3, ∵AC=BC, ∴OH=OK, ∴△OGK≌△OFH, ∴S四边形OFCG=S四边形OHCK=S△ABC.
复制答案
考点分析:
相关试题推荐
如图,已知在⊙O中,AB=8manfen5.com 满分网,AC是⊙O的直径,AC⊥BD于F,∠A=30°.
(1)求图中阴影部分的面积;
(2)若用阴影扇形OBD围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO,若DE=2manfen5.com 满分网,∠DPA=45°.
(1)求⊙O的半径;
(2)求图中阴影部分的面积.

manfen5.com 满分网 查看答案
如图,⊙O的直径AB长为6,弦AC长为2,∠ACB的平分线交⊙O于点D.
(1)求BC、AD的长;
(2)求四边形ADBC的面积.

manfen5.com 满分网 查看答案
如图,PA与⊙O相切于A点,弦AB⊥OP,垂足为C,OP与⊙O相交于D点,已知OA=2,OP=4.
(1)求∠POA的度数;
(2)计算弦AB的长.

manfen5.com 满分网 查看答案
如图AB是⊙O的直径,∠A=30°,延长OB到D使BD=OB.
(1)△OBC是否是等边三角形?说明理由;
(2)求证:DC是⊙O的切线.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.