满分5 > 初中数学试题 >

在直角坐标平面内,O为原点,点A的坐标为(1,0),点C的坐标为(0,4),直线...

在直角坐标平面内,O为原点,点A的坐标为(1,0),点C的坐标为(0,4),直线CM∥x轴(如图所示).点B与点A关于原点对称,直线y=x+b(b为常数)经过点B,且与直线CM相交于点D,连接OD.
(1)求b的值和点D的坐标;
(2)设点P在x轴的正半轴上,若△POD是等腰三角形,求点P的坐标;
(3)在(2)的条件下,如果以PD为半径的圆P与圆O外切,求圆O的半径.

manfen5.com 满分网
(1)先求出点B的坐标,由直线过点B,把点B的坐标代入解析式,可求得b的值;点D在直线CM上,其纵坐标为4,利用求得的解析式确定该点的横坐标即可; (2)△POD为等腰三角形,有三种情况:PO=OD,PO=PD,DO=DP,故需分情况讨论,要求点P的坐标,只要求出点P到原点O的距离即可; (3)结合(2),可知⊙O的半径也需根据点P的不同位置进行分类讨论. 【解析】 (1)∵B与A(1,0)关于原点对称 ∴B(-1,0) ∵y=x+b过点B ∴-1+b=0,b=1 ∴y=x+1 当y=4时,x+1=4,x=3 ∴D(3,4); (2)作DE⊥x轴于点E,则OE=3,DE=4, ∴OD=. 若△POD为等腰三角形,则有以下三种情况: ①以O为圆心,OD为半径作弧交x轴的正半轴于点P1,则OP1=OD=5, ∴P1(5,0). ②以D为圆心,DO为半径作弧交x轴的正半轴于点P2,则DP2=DO=5, ∵DE⊥OP2 ∴P2E=OE=3, ∴OP2=6, ∴P2(6,0). ③取OD的中点N,过N作OD的垂线交x轴的正半轴于点P3,则OP3=DP3, 易知△ONP3∽△DCO. ∴=. ∴=,OP3=. ∴P3(,0). 综上所述,符合条件的点P有三个,分别是P1(5,0),P2(6,0),P3(,0). (3)①当P1(5,0)时,P1E=OP1-OE=5-3=2,OP1=5, ∴P1D===2. ∴⊙P的半径为. ∵⊙O与⊙P外切, ∴⊙O的半径为5-2. ②当P2(6,0)时,P2D=DO=5,OP2=6, ∴⊙P的半径为5. ∵⊙O与⊙P外切, ∴⊙O的半径为1. ③当P3(,0)时,P3D=OP3=, ∴⊙P的半径为. ∵⊙O与⊙P外切, ∴⊙O的半径为0,即此圆不存在.
复制答案
考点分析:
相关试题推荐
如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.
(1)求证:AE是⊙O的切线;
(2)若∠DBC=30°,DE=1cm,求BD的长.

manfen5.com 满分网 查看答案
今年五月,某工程队(有甲、乙两组)承包人民路中段的路基改造工程,规定若干天内完成.
(1)已知甲组单独完成这项工程所需时间比规定时间的2倍多4天,乙组单独完成这项工程所需时间比规定时间的2倍少16天.如果甲、乙两组合做24天完成,那么甲、乙两组合做能否在规定时间内完成?
(2)在实际工作中,甲、乙两组合做完成这项工程的manfen5.com 满分网后,工程队又承包了东段的改造工程,需抽调一组过去,从按时完成中段任务考虑,你认为抽调哪一组最好?请说明理由.
查看答案
如图,秋千拉绳长AB为3米,静止时踩板离地面0.5米,小朋友荡该秋千时,秋千在最高处时踩板离地面2米(左右对称),请计算该秋千所荡过的圆弧长?

manfen5.com 满分网 查看答案
在不透明的口袋里装有白、红、黄三种颜色的乒乓球(除颜色外其余都相同),现从中任意摸出一个是白球的概率为manfen5.com 满分网,从中任意摸出一个是红球的概率为manfen5.com 满分网.白球比红球多1个.
(1)试求袋中白球、黄球、红球的个数;
(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图,或列表格法,求两次摸到都是白球的概率.
查看答案
设m为整数,且4<m<40,方程x2-2(2m-3)x+4m2-14m+8=0有两个不相等的整数根,求m的值及方程的根.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.