连接CB.PA、PB是QO的切线,由切线长定理知PA=PB;又∠P=60°,则等腰三角形APB是等边三角形,则有ABP=60°;由弦切角定理知,∠PAB=∠C=60°,AC是直径;由直径对的圆周角是直角得∠ABC=90°,则在Rt△ABC中,有∠CAB=30°,进而可知AB=ACsin∠CAB=12×=6(若取近似值,不扣分).
【解析】
连接CB.
∵PA、PB是⊙O的切线,
∴PA=PB,
又∵∠P=60°,
∴∠PAB=60°;
又∵AC是⊙O的直径,
∴CA⊥PA,∠ABC=90°,
∴∠CAB=30°,
而AC=12,
∴在Rt△ABC中,cos30°=,
∴AB=12×=6(若取近似值,不扣分).