满分5 > 初中数学试题 >

如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24c...

如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,AB为⊙O的直径.动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以3cm/s的速度运动,P、Q两点同时出发,当其中一点到达端点时,另一点也随之停止运动.设运动时间为t,求:
(1)t分别为何值时,四边形PQCD为平行四边形、等腰梯形?
(2)t分别为何值时,直线PQ与⊙O相切、相离、相交?

manfen5.com 满分网
(1)若PQCD为平行四边形,则需QC=PD,即3t=24-t,得t=6秒;同理只要PQ=CD,PD≠QC,四边形PQCD为等腰梯形,如图,过P、D分别作BC的垂线,交BC于E、F点,则EF=PD,QE=FC=2,即3t-(24-t)=4,解得t=7秒,问题得解. (2)因为点P、Q分别在线段AD和BC上的运动,可以统一到直线PQ的运动中,要探求时间t对直线PQ与⊙O位置关系的影响,可先求出t为何值时,直线PQ与⊙O相切这一整个运动过程中的一瞬,再结合PQ的初始与终了位置一起加以考虑,设运动t秒时,直线PQ与⊙O相切于点G,如图因为,AB=8,AP=t,BQ=26-3t,所以,PQ=26-2t,因而,过p做PH⊥BC,得HQ=26-4t,于是由勾股定理,可的关于t的一元二次方程,则t可求.问题得解. 【解析】 (1)因为AD∥BC, 所以,只要QC=PD,则四边形PQCD为平行四边形, 此时有,3t=24-t, 解得t=6, 所以t=6秒时,四边形PQCD为平行四边形. 又由题意得,只要PQ=CD,PD≠QC,四边形PQCD为等腰梯形, 过P、D分别作BC的垂线交BC于E、F两点, 则由等腰梯形的性质可知,EF=PD,QE=FC=2, 所以3t-(24-t)=4, 解得t=7秒所以当t=7秒时,四边形PQCD为等腰梯形. (2)设运动t秒时,直线PQ与⊙O相切于点G,过P作PH⊥BC于点H, 则PH=AB=8,BH=AP, 可得HQ=26-3t-t=26-4t, 由切线长定理得,AP=PG,QG=BQ, 则PQ=PG+QG=AP+BQ=t+26-3t=26-2t 由勾股定理得:PQ2=PH2+HQ2,即 (26-2t)2=82+(26-4t)2 化简整理得 3t2-26t+16=0, 解得t1=或 t2=8, 所以,当t1=或 t2=8时直线PQ与⊙O相切. 因为t=0秒时,直线PQ与⊙O相交, 当t=秒时,Q点运动到B点,P点尚未运动到D点,但也停止运动,直线PQ也与⊙O相交, 所以可得以下结论: 当t1=或 t2=8秒时,直线PQ与⊙O相切; 当0≤t<或8<t≤(单位秒)时,直线PQ与⊙O相交; 当<t<8时,直线PQ与⊙O相离.
复制答案
考点分析:
相关试题推荐
如图所示,有一座拱桥圆弧形,它的跨度AB为60米,拱高为18米,当洪水泛滥到跨度只有30米时,就要采取紧急措施,若拱顶离水面只有4米,即PN=4米时,试通过计算说明是否需要采取紧急措施?

manfen5.com 满分网 查看答案
某商场新进一批商品,每个成本价25元,销售一段时间发现销售量y(个)与销售单价x(元/个)之间成一次函数关系,如下表:
x(元/个)3050
y(个)190150
(1)求y与x之间的函数关系式;
(2)若该商品的销售单价在45元~80元之间浮动,
①销售单价定为多少元时,销售利润最大?此时销售量为多少?
②商场想要在这段时间内获得4 550元的销售利润,销售单价应定为多少元?
查看答案
如图,在⊙O中,AB为直径,AC为弦,过点C作CD⊥AB于点D,将△ACD沿AC翻折,点D落在点E处,AE交⊙O于点F,连接OC、FC.
(1)求证:CE是⊙O的切线.
(2)若FC∥AB,求证:四边形AOCF是菱形.

manfen5.com 满分网 查看答案
某电视台为了解观众对“谍战”题材电视剧的喜爱情况,随机抽取某社区部分电视观众,进行问卷调查,整理绘制了如下不完整的条形统计图和扇形统计图:
manfen5.com 满分网
请根据以上信息,解答下列问题:
(1)在这次接受调查的女观众中,表示“不喜欢”的女观众所占的百分比是多少?
(2)求这次调查的男观众人数,并补全条形统计图.
(3)若该社区有男观众约1000人,估计该社区男观众喜欢看“谍战”题材电视剧的约有多少人?
查看答案
在▱ABCD中,E、F分别是AB、CD的中点,连接AF、CE.
(1)求证:△BEC≌△DFA;
(2)连接AC,当CA=CB时,判断四边形AECF是什么特殊四边形?并证明你的结论.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.