满分5 > 初中数学试题 >

如图,抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3...

如图,抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3),设抛物线的顶点为D.
(1)求抛物线的解析式;
(2)求抛物线顶点D的坐标;
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请指出符合条件的点P的位置,并直接写出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)利用待定系数法将A(-1,0)、B(3,0),C(0,-3),代入y=ax2+bx+c,求出二次函数解析式即可; (2)利用配方法直接求出顶点坐标即可; (3)根据相似三角形的判定方法分别得出即可. 【解析】 (1)设该抛物线的解析式为y=ax2+bx+c, 由抛物线与y轴交于点C(0,-3),可知c=-3. 即抛物线的解析式为y=ax2+bx-3把A(-1,0)、B(3,0)代入, 得 ①×3+②得3a-3b-9+9a+3b-3=0,即12a=12, 解得a=1,b=-2. ∴抛物线的解析式为y=x2-2x-3; (2)∵y=x2-2x-3 =(x2-2x+1)-4, =(x-1)2-4, ∴顶点D的坐标为(1,-4); (3)连接AC, 易得:CD=,BC=3,BD=2, ∴CD2+DB2=BC2, 可知Rt△COA∽Rt△BCD,得符合条件的点为O(0,0) 过A作AP1⊥AC交y轴正半轴于P1,可知Rt△CAP1∽Rt△COA∽Rt△BCD, 求得符合条件的点为. 过C作CP2⊥AC交x轴正半轴于P2,可知Rt△P2CA∽Rt△COA∽Rt△BCD, 求得符合条件的点为P2(9,0). ∴符合条件的点有三个:(0,0),,P2(9,0).
复制答案
考点分析:
相关试题推荐
如图,等边三角形OAB的边长为2,将线段OB绕着点O逆时针旋转60°得到线段OC,连接BC.
(1)试判定四边形OABC的形状;
(2)求点O到BC的距离;
(3)以O为圆心,r为半径作⊙O,根据⊙O与四边形OABC四条边交点的总个数,求相应r的取值范围.

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.
(1)判断直线CD与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为1,求图中阴影部分的面积(结果保留π)

manfen5.com 满分网 查看答案
已知二次函数y=x2-2x-3.
(1)用配方法把该函数化为y=a(x-h)2+k的形式,并写出抛物线y=x2-2x-3的对称轴和顶点坐标;
(2)在直角坐标系中,直接画出抛物线y=x2-2x-3.(注意:关键点要准确,不必写出画图象的过程.)
(3)根据图象回答:
①x取什么值时,抛物线在x轴的上方?
②x取什么值时,y的值随x的值的增大而减小?
manfen5.com 满分网
查看答案
如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B,且DM交AC于F,ME交BC于G.写出图中的所有相似三角形,并选择一对加以证明.

manfen5.com 满分网 查看答案
已知△ABC在平面直角坐标系中的位置如图所示.
(1)分别写出图中点A和点C的坐标;
(2)画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;
(3)求点A旋转到点A′所经过的路线长(结果保留π).

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.