满分5 > 初中数学试题 >

如图所示, (1)正方形ABCD及等腰Rt△AEF有公共顶点A,∠EAF=90°...

如图所示,
(1)正方形ABCD及等腰Rt△AEF有公共顶点A,∠EAF=90°,连接BE、DF.将Rt△AEF绕点A旋转,在旋转过程中,BE、DF具有怎样的数量关系和位置关系?结合图(1)给予证明;
(2)将(1)中的正方形ABCD变为矩形ABCD,等腰Rt△AEF变为Rt△AEF,且AD=kAB,AF=kAE,其他条件不变.(1)中的结论是否发生变化?结合图(2)说明理由;
(3)将(2)中的矩形ABCD变为平行四边形ABCD,将Rt△AEF变为△AEF,且∠BAD=∠EAF=a,其他条件不变.(2)中的结论是否发生变化?结合图(3),如果不变,直接写出结论;如果变化,直接用k表示出线段BE、DF的数量关系,用a表示出直线BE、DF形成的锐角β.
manfen5.com 满分网
(1)根据旋转的过程中线段的长度不变,得到AF=AE,又∠BAE与∠DAF都与∠BAF互余,所以∠BAE=∠DAF,所以△FAD≌△EAB,因此BE与DF相等,延长DF交BE于G,根据全等三角形的对应角相等和四边形的内角和等于360°求出∠EGF=90°,所以DF⊥BE;(2)等同(1)的方法,因为矩形的邻边不相等,但根据题意,可以得到对应边成比例,所以△FAD∽△EAB,所以DF=kBE,同理,根据相似三角形的对应角相等和四边形的内角和等于360°求出∠EHF=90°,所以DF⊥BE; (3)与(2)的证明方法相同,但根据相似三角形的对应角相等和四边形的内角和等于360°求出∠EAF+∠EHF=180°,所以DF与BE的夹角β=180°-α. 【解析】 (1)DF与BE互相垂直且相等. 证明:延长DF分别交AB、BE于点P、G(1分) 在正方形ABCD和等腰直角△AEF中 AD=AB,AF=AE, ∠BAD=∠EAF=90° ∴∠FAD=∠EAB ∴△FAD≌△EAB(2分) ∴∠AFD=∠AEB,DF=BE(3分) ∵∠AFD+∠AFG=180°, ∴∠AEG+∠AFG=180°, ∵∠EAF=90°, ∴∠EGF=180°-90°=90°, ∴DF⊥BE(5分) (2)数量关系改变,位置关系不变.DF=kBE,DF⊥BE.(7分) 延长DF交EB于点H, ∵AD=kAB,AF=kAE ∴=k,=k ∴= ∵∠BAD=∠EAF=a ∴∠FAD=∠EAB ∴△FAD∽△EAB(9分) ∴=k ∴DF=kBE(10分) ∵△FAD∽△EAB, ∴∠AFD=∠AEB, ∵∠AFD+∠AFH=180°, ∴∠AEH+∠AFH=180°, ∵∠EAF=90°, ∴∠EHF=180°-90°=90°, ∴DF⊥BE(5分) (3)不改变.DF=kBE,β=180°-a.(7分) 证法(一):延长DF交EB的延长线于点H, ∵AD=kAB,AF=kAE ∴=k,=k ∴= ∵∠BAD=∠EAF=a ∴∠FAD=∠EAB ∴△FAD∽△EAB(9分) ∴=k ∴DF=kBE(10分) 由△FAD∽△EAB得∠AFD=∠AEB ∵∠AFD+∠AFH=180° ∴∠AEB+∠AFH=180° ∵四边形AEHF的内角和为360°, ∴∠EAF+∠EHF=180° ∵∠EAF=α,∠EHF=β ∴a+β=180°∴β=180°-a(12分) 证法(二):DF=kBE的证法与证法(一)相同 延长DF分别交EB、AB的延长线于点H、G.由△FAD∽△EAB得∠ADF=∠ABE ∵∠ABE=∠GBH,∴∠ADF=∠GBH, ∵β=∠BHF=∠GBH+∠G∴β=∠ADF+∠G. 在△ADG中,∠BAD+∠ADF+∠G=180°,∠BAD=a ∴a+β=180°∴β=180°-a(12分) 证法(三):在平行四边形ABCD中AB∥CD可得到∠ABC+∠C=180° ∵∠EBA+∠ABC+∠CBH=180°∴∠C=∠EBA+∠CBH 在△BHP、△CDP中,由三角形内角和等于180°可得∠C+∠CDP=∠CBH+∠BHP ∴∠EBA+∠CBH+∠CDP=∠CBH+∠BHP ∴∠EBA+∠CDP=∠BHP 由△FAD∽△EAB得∠ADP=∠EBA ∴∠ADP+∠CDP=∠BHP即∠ADC=∠BHP ∵∠BAD+∠ADC=180°,∠BAD=a,∠BHP=β ∴a+β=180°∴β=180°-a(12分) (有不同解法,参照以上给分点,只要正确均得分.)
复制答案
考点分析:
相关试题推荐
近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4mg/L,此后浓度呈直线型增加,在第7小时达到最高值46mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如图所示,根据题中相关信息回答下列问题:
(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围;
(2)当空气中的CO浓度达到34mg/L时,井下3km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生?
(3)矿工只有在空气中的CO浓度降到4mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?

manfen5.com 满分网 查看答案
如图,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,巳知该山坡的坡度i(即tan∠ABC)为1:manfen5.com 满分网,点P,H,B,C,A在同一个平面上,点H、B、C在同一条直线上,且PH丄HC.
(1)山坡坡角(即∠ABC)的度数等于______度;
(2)求A、B两点间的距离(结果精确到0.1米,参考数据:manfen5.com 满分网≈1.732).

manfen5.com 满分网 查看答案
要对一块长60米,宽40米的矩形荒地ABCD进行绿化和硬化、设计方案如图所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD面积的manfen5.com 满分网,求P、Q两块绿地周围的硬化路面的宽.

manfen5.com 满分网 查看答案
某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.
(1)请你补全这个输水管道的圆形截面;
(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.

manfen5.com 满分网 查看答案
(1)解下列方程:3x2+7x+2=0
(2)计算:sin245°+tan30°sin60°-2cos30°.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.