满分5 > 初中数学试题 >

如图,在等腰Rt△ABC中,P是斜边BC的中点,以P为顶点的直角的两边分别与边A...

如图,在等腰Rt△ABC中,P是斜边BC的中点,以P为顶点的直角的两边分别与边AB,AC交于点E,F,连接EF.当∠EPF绕顶点P旋转时(点E不与A,B重合),△PEF也始终是等腰直角三角形,请你说明理由.

manfen5.com 满分网
要想证明△PEF始终是等腰直角三角形,得证明∠EPF=90°,PE=PF.证线段相等通常是证明线段所在的三角形全等.而等腰三角形最常用的辅助线是用“三线合一”作辅助线,构造三角形全等. 【解析】 理由如下: 连接PA, ∵PA是等腰△ABC底边上的中线, ∴PA⊥PC(等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)). 又AB⊥AC, ∴∠1=90°-∠PAC,∠C=90°-∠PAC, ∴∠1=∠C(等量代换). 同理可得PA⊥PC,PE⊥PF, ∴∠2=90°-∠APF,∠3=90°-∠APF, ∴∠2=∠3. 由PA是Rt△ABC斜边上的中线,得: PA=BC=PC(直角三角形斜边上的中线等于斜边的一半). 在△PAE和△PCF中,∠1=∠C,PA=PC,∠2=∠3, ∴△PAE≌△PCF(ASA). ∴PE=PF(全等三角形对应边相等), 则△PEF始终是等腰直角三角形.
复制答案
考点分析:
相关试题推荐
如图,在方格纸(每个小方格都是边长为1个单位长度的正方形)中,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点图形.如图中的△ABC称为格点△ABC.
(1)如果A、D两点的坐标分别是(1,1)和(0,-1),请你在方格纸中建立平面直角坐标系,并直接写出点B、点C的坐标;
(2)请根据你所学过的平移、旋转或轴对称等知识,说明图中“格点四边形图manfen5.com 满分网案”是如何通过“格点△ABC图案”变换得到的.
查看答案
manfen5.com 满分网如图,△ABC中,∠ACB=90°,AC=BC,CO为中线.现将一直角三角板的直角顶点放在点O上并绕点O旋转,若三角板的两直角边分别交AC,CB的延长线于点G,H.
(1)试写出图中除AC=BC,OA=OB=OC外其他所有相等的线段;
(2)请任选一组你写出的相等线段给予证明.
我选择证明______=______
查看答案
已知∠AOB=90°,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合,它的两条直角边分别与OA、OB(或它们的反向延长线)相交于点D、E.
(1)当三角板绕点C旋转到CD与OA垂直时(如图1),易证:OD+OE=manfen5.com 满分网OC;
(2)当三角板绕点C旋转到CD与OA不垂直时,在图2、图3这两种情况下,上述结论是否还成立?若成立,请给予证明;若不成立,线段OD、OE、OC之间又有怎样的数量关系?请写出你的猜想,不需证明.
manfen5.com 满分网
查看答案
已知:在Rt△ABC中,AB=BC,在Rt△ADE中,AD=DE,连接EC,取EC的中点M,连接DM和BM.
(1)若点D在边AC上,点E在边AB上且与点B不重合,如图1,探索BM、DM的关系并给予证明;
(2)如果将图1中的△ADE绕点A逆时针旋转小于45°的角,如图2,那么(1)中的结论是否仍成立?如果不manfen5.com 满分网成立,请举出反例;如果成立,请给予证明.
查看答案
图1是边长分别为manfen5.com 满分网和3的两个等边三角形纸片ABC和C′D′E′叠放在一起(C与C′重合).
(1)操作:固定△ABC,将△C′D′E′绕点C顺时针旋转30°得到△CDE,连接AD,BE,CE的延长线交AB于F(图2).
探究:在图2中,线段BE与AD之间有怎样的大小关系?试证明你的结论;
(2)操作:将图2中的△CDE,在线段CF上沿着CF方向以每秒1个单位的速度平移,平移后的△CDE设为△PQR(图3).
探究:设△PQR移动的时间为x秒,△PQR与△AFC重叠部分的面积为y,求y与x之间的函数解析式,并写出函数自变量x的取值范围.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.