满分5 > 初中数学试题 >

在平面直角坐标系xOy中,OEFG为正方形,点F的坐标为(1,1).将一个最短边...

在平面直角坐标系xOy中,OEFG为正方形,点F的坐标为(1,1).将一个最短边长大于manfen5.com 满分网的直角三角形纸片的直角顶点放在对角线FO上.
(1)如图,当三角形纸片的直角顶点与点F重合,一条直角边落在直线FO上时,这个三角形纸片与正方形OEFG重叠部分(即阴影部分)的面积为______
(2)若三角形纸片的直角顶点不与点O,F重合,且两条直角边与正方形相邻两边相交,当这个三角形纸片与正方形OEFG重叠部分的面积是正方形面积的一半时,试确定三角形纸片直角顶点的坐标(不要求写出求解过程),并画出此时的图形.
manfen5.com 满分网
(1)S=OE•EF=; (2)如图,正方形GFEO的面积为1,当重合的面积为正方形GFEO的面积的一半时,有两种情况: ①四边形OSCB的面积为时,易证得四边形ACDO为正方形,△ABC≌△DSC,有四边形OSCB的面积与正方形ACDO的面积相等,故有OD=OA=即点C的坐标为(,). ②四边形FSCB的面积为时,易证得四边形ACDF为正方形,△ABC≌△DSC,有四边形FSCB的面积与正方形ACDO的面积相等,故有AD=FA=即点C的坐标为(1-,1-). 【解析】 (1)S=OE•EF=; (2)如图,正方形GFEO的面积为1,当重合的面积为正方形GFEO的面积的一半时,有两种情况: ①四边形OSCB的面积为时,易证得四边形ACOD为正方形,△ABC≌△DSC,有四边形OSCB的面积与正方形ACOD的面积相等,故有OD=OA=即点C的坐标为(,). ②四边形FSCB的面积为时,易证得四边形ACDF为正方形,△ABC≌△DSC,有四边形FSCB的面积与正方形ACDO的面积相等,故有FD=FA=即点C的坐标为(1-,1-).
复制答案
考点分析:
相关试题推荐
两个长为2cm,宽为1cm的长方形,摆放在直线l上(如图①),CE=2cm,将长方形ABCD绕着点C顺时针旋转α角,将长方形EFGH绕着点E逆时针旋转相同的角度.
(1)当旋转到顶点D、H重合时,连接AG(如图②),求点D到AG的距离;
(2)当α=45°时(如图③),求证:四边形MHND为正方形.manfen5.com 满分网
查看答案
如图,已知正方形ABCD,把一个直角与正方形叠合,使直角顶点与A重合,两边分别与AB、AD重合.将直角绕点A按逆时针方向旋转,当直角的一边与BC相交于E点,另一边与CD的延长线相交于F点时,作∠EAF的平分线交CD于G,连接EG.
求证:(1)BE=DF;(2)BE+DG=EG.

manfen5.com 满分网 查看答案
如图,已知正方形ABCD的边长是2,E是AB的中点,延长BC到点F使CF=AE.
(1)若把△ADE绕点D旋转一定的角度时,能否与△CDF重合?请说明理由.
(2)现把△DCF向左平移,使DC与AB重合,得△ABH,AH交ED于点G.求证:AH⊥ED,并求AG的长.

manfen5.com 满分网 查看答案
如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)观察猜想BE与DG之间的大小关系,并证明你的结论;
(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请说出旋转过程;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,已知四边形ABCD、AEFG均为正方形,∠BAG=α(0°<α<180°).
(1)求证:BE=DG,且BE⊥DG;
(2)设正方形ABCD、AEFG的边长分别是3和2,线段BD、DE、EG、GB所围成封闭图形的面积为S.当α变化时,指出S的最大值及相应的α值.(直接写出结果,不必说明理由)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.