满分5 > 初中数学试题 >

如图,已知△ABC,AC=BC=6,∠C=90度.O是AB的中点,⊙O与AC相切...

如图,已知△ABC,AC=BC=6,∠C=90度.O是AB的中点,⊙O与AC相切于点D、与BC相切于点E.设⊙O交OB于F,连DF并延长交CB的延长线于G.
(1)∠BFG与∠BGF是否相等?为什么?
(2)求由DG、GE和弧ED所围成图形的面积.(阴影部分)

manfen5.com 满分网
(1)连接OD.根据切线的性质得到OD⊥AC,则OD∥BC;可得∠ODF=∠G,再结合对顶角相等和等边对等角得到∠BFG=∠BGF. (2)阴影部分的面积=直角三角形CDG的面积-(正方形的面积-扇形ODE的面积).根据等腰直角三角形的性质可求出有关边AB、OD的长,以及圆心角∠DOE的度数.进而可根据扇形的面积和直角三角形的面积求得阴影部分的面积. 【解析】 (1)∠BFG=∠BGF;理由如下: 连OD, ∵OD=OF(⊙O的半径), ∴∠ODF=∠OFD; ∵⊙O与AC相切于点D,∴OD⊥AC; 又∵∠C=90°,即GC⊥AC,∴OD∥GC, ∴∠BGF=∠ODF; 又∵∠BFG=∠OFD, ∴∠BFG=∠BGF. (2)连OE, ∵⊙O与AC相切于点D、与BC相切于点E, ∴DC=CE,OD⊥AC,OE⊥BC, ∵∠C=90°, ∴四边形ODCE为正方形, ∵AO=BO=AB==3, ∴OD=BC=×6=3, ∵∠BFG=∠BGF, ∴BG=BF=OB-OF=3-3; 从而CG=CB+BG=3+3; ∴S阴影=S△DCG-S正方形ODCE+S扇形ODE =S△DCG-(S正方形ODCE-S扇形ODE) =•3•(3+3)-(32-π•32) =.
复制答案
考点分析:
相关试题推荐
如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15m3的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了多少元钱?
manfen5.com 满分网
查看答案
用工件槽(如图1)可以检测一种铁球的大小是否符合要求,已知工件槽的两个底角均为90°,尺寸如图(单位:cm).将形状规则的铁球放入槽内时,若同时具有图1所示的A、B、E三个接触点,该球的大小就符合要求.图2是过球心O及A、B、E三点的截面示意图,求这种铁球的直径.
manfen5.com 满分网
查看答案
已知关于x的一元二次方程x2-(m-1)x+m+2=0,
(1)若方程有两个相等的实数根,求m的值;
(2)若方程的两实数根之积等于m2-9m+2,求m的值.
查看答案
如图,两个可自由转动的均匀转盘A、B都被分成了3等份,在每一份内均标有数字,分别转动转盘A、B,两个转盘停止后观察两个指针所指份内的数字(若指针停在等份线上,那么重转一次,直到指针指向某一份内为止).用列表法(或树状图)求“两个指针所指的数字都是偶数”的概率.

manfen5.com 满分网 查看答案
manfen5.com 满分网在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上.(每个小方格的顶点叫格点)
(1)画出△ABC向下平移3个单位后的△A1B1C1
(2)画出△ABC绕点O顺时针旋转90°后的△A2B2C2,并求点A旋转到A2所经过的路线长.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.