如图,在平面直角坐标系中,已知点A(-2,-4),OB=2,抛物线y=ax
2+bx+c经过点A、O、B三点.
(1)求抛物线的函数表达式;
(2)若点M是抛物线对称轴上一点,试求AM+OM的最小值;
(3)在此抛物线上,是否存在点P,使得以点P与点O、A、B为顶点的四边形是梯形?若存在,求点P的坐标;若不存在,请说明理由.
考点分析:
相关试题推荐
如图,点P是正方形ABCD边AB上一点(不与点A,B重合),连接PD并将线段PD绕点P顺时针方向旋转90°得到线段PE,PE交边BC于点F,连接BE,DF.
(1)求证:∠ADP=∠EPB;
(2)求∠CBE的度数;
(3)当

的值等于多少时,△PFD∽△BFP?并说明理由.
查看答案
某工厂计划招聘A,B两个工种的工人120人,已知A,B两个工种的工人的月工资分别为800元和1000元.
(1)若工厂每月所支付的工资为110 000元,那么A,B两个工种的工人各招聘多少人?
(2)若要求B工种的人数不少于A工种人数的2倍,那么招聘A工种的工人多少人时,可使每月所支付的工资最少?
查看答案
如图,已知AB是⊙O的直径,AC为弦,且平分∠BAD,AD⊥CD,垂足为D.
(1)求证:CD是⊙O切线;
(2)若⊙O的直径为4,AD=3,求∠BAC的度数.
查看答案
如图,线段AB,CD分别表示甲、乙两建筑物的高,AB⊥BC,CD⊥BC,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,已知乙建筑物高CD=40米.试求甲建筑物高AB.
查看答案
某中学组织了300名学生参加科普知识竞赛,为了解竞赛情况,从而抽取了部分学生的成绩进行统计(得分取整数,满分为100分).请根据下面尚未完成的频率分布表和频率分布直方图,解答下列问题:
(1)补全频率分布表和频率分布直方图;
(2)若成绩在80分以上(不含80分)为良好,则此次竞赛中该校成绩良好的学生有______人.
分组 | 频数 | 频率 |
50.5~60.5 | 4 | 0.08 |
60.5~70.5 | 8 | 0.16 |
70.5~80.5 | | |
80.5~90.5 | 16 | |
90.5~100.5 | 2 | 0.04 |
合计 | | 1.00 |
查看答案