满分5 > 初中数学试题 >

已知:如图(1),在平面直角坐标xOy中,边长为2的等边△OAB的顶点B在第一象...

已知:如图(1),在平面直角坐标xOy中,边长为2的等边△OAB的顶点B在第一象限,顶点A在x轴的正半轴上.另一等腰△OCA的顶点C在第四象限,OC=AC,∠C=120°.现有两动点P、Q分别从A、O两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿A→O→B运动,当其中一个点到达终点时,另一个点也随即停止.
(1)求在运动过程中形成的△OPQ的面积S与运动的时间t之间的函数关系,并写出自变量t的取值范围;
(2)在等边△OAB的边上(点A除外)存在点D,使得△OCD为等腰三角形,请直接写出所有符合条件的点D的坐标;
(3)如图(2),现有∠MCN=60°,其两边分别与OB、AB交于点M、N,连接MN.将∠MCN绕着C点旋转(0°<旋转角<60°),使得M、N始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.
manfen5.com 满分网manfen5.com 满分网
(1)由于点Q从点O运动到点C需要秒,点P从点A→O→B需要秒,所以分两种情况讨论:①0<t<;②≤t<.针对每一种情况,根据P点所在的位置,由三角形的面积公式得出△OPQ的面积S与运动的时间t之间的函数关系,并且得出自变量t的取值范围; (2)如果△OCD为等腰三角形,那么分D在OA边或者OB边上或AB边上三种情形.每一种情形,都有可能O为顶点,C为顶点,D为顶点,分别讨论,得出结果; (3)如果延长BA至点F,使AF=OM,连接CF,则由SAS可证△MOC≌△FAC,得出MC=CF,再由SAS证出△MCN≌△FCN,得出MN=NF,那么△BMN的周长=BA+BO=4. 【解析】 (1)过点C作CD⊥OA于点D.(如图) ∵OC=AC,∠ACO=120°, ∴∠AOC=∠OAC=30°. ∵OC=AC,CD⊥OA,∴OD=DA=1. 在Rt△ODC中,OC===(1分) (i)当0<t<时,OQ=t,AP=3t,OP=OA-AP=2-3t. 过点Q作QE⊥OA于点E.(如图) 在Rt△OEQ中, ∵∠AOC=30°, ∴QE=OQ=, ∴S△OPQ=OP•EQ=(2-3t)•=-+t, 即S=-+t;(3分) (ii)当<t≤时(如图) OQ=t,OP=3t-2. ∴∠BOA=60°,∠AOC=30°,∴∠POQ=90°. ∴S△OPQ=OQ•OP=t•(3t-2)=-t, 即S=-t; 故当0<t<时,S=-+t,当<t≤时,S=-t(5分) (2)D(,1)或(,0)或(,0)或(,)(9分) (3)△BMN的周长不发生变化.理由如下: 延长BA至点F,使AF=OM,连接CF.(如图) 又∵∠MOC=∠FAC=90°,OC=AC, ∴△MOC≌△FAC, ∴MC=CF,∠MCO=∠FCA.(10分) ∴∠FCN=∠FCA+∠NCA=∠MCO+∠NCA =∠OCA-∠MCN =60°, ∴∠FCN=∠MCN. 在△MCN和△FCN中, , ∴△MCN≌△FCN, ∴MN=NF.(11分) ∴BM+MN+BN=BM+NF+BN=BO-OM+BA+AF=BA+BO=4. ∴△BMN的周长不变,其周长为4.
复制答案
考点分析:
相关试题推荐
小强和爸爸上山游玩,两人距地面的高度y(米)与小强登山时间x(分)之间的函数图象分别如图中折线OAC和线段DE所示,根据函数图象进行以下探究:
信息读取
(1)爸爸登山的速度是每分钟______米;
(2)请解释图中点B的实际意义;
图象理解
(3)求线段DE所表示的y与x之间的函数关系式,并写出自变量x的取值范围;
(4)计算、填空:m=______
问题解决
(5)若小强提速后,他登山的速度是爸爸速度的3倍,间:小强登山多长时间时开始提速?此时小强距地面的高度是多少米?

manfen5.com 满分网 查看答案
如图,已知OA⊥OB,OA=4,OB=3,以AB为边作矩形ABCD,使AD=a,过点D作DE垂直OA的延长线交于点E.
(1)证明:△OAB∽△EDA;
(2)当a为何值时,△OAB与△EDA全等?请说明理由,并求出此时点C到OE的距离.

manfen5.com 满分网 查看答案
甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打笫一场比赛.
(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率;
(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.
查看答案
已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和π)《根据2011江苏扬州市中考试题改编》

manfen5.com 满分网 查看答案
列方程或方程组解应用题:
某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染、请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.