满分5 > 初中数学试题 >

如图,已知OA⊥OB,OA=4,OB=3,以AB为边作矩形ABCD,使AD=a,...

如图,已知OA⊥OB,OA=4,OB=3,以AB为边作矩形ABCD,使AD=a,过点D作DE垂直OA的延长线交于点E.
(1)证明:△OAB∽△EDA;
(2)当a为何值时,△OAB与△EDA全等?请说明理由,并求出此时点C到OE的距离.

manfen5.com 满分网
(1)由于四边形ABCD是矩形,则∠BAD=90°,那么∠OBA、∠DAE同为∠BAO的余角,即∠OBA=∠DAE,而∠BOA、∠DEA都是直角,由此可证得△OAB∽△EDA. (2)若△OAB与△EDA全等,则AB=AD,在Rt△OAB中,利用勾股定理易求得AB=5,那么a=AD=AB=5; 求C到OE的距离,可过C作CH⊥OE于H,过B作BF⊥CH于F;那么CH就是所求的距离,通过上面的解题思路,易证得△CBF≌△ABO,得CH=OA=4,BO=BF,那么四边形BOHF是正方形,由此可得FH=BO=3,根据CH=CF+FH即可求得C到OE的距离. (1)证明:如图所示, ∵OA⊥OB, ∴∠1+∠2=90°, 又∵四边形ABCD是矩形, ∴∠BAD=90°, ∴∠2+∠3=90°, ∴∠1=∠3,(1分) ∵OA⊥OB,OE⊥OA, ∴∠BOA=∠DEA=90°,(2分) ∴△OAB∽△EDA.(3分) (2)【解析】 在Rt△OAB中,AB==5,(4分) 由(1)可知∠1=∠3,∠BOA=∠DEA=90°, ∴当a=AD=AB=5时,△AOB与△EDA全等.(5分) 当a=AD=AB=5时,可知矩形ABCD为正方形, ∴BC=AB,如图,过点C作CH⊥OE交OE于点H, 则CH就是点C到OE的距离,过点B作BF⊥CH交CH于点F, 则∠4与∠5互余,∠1与∠5互余, ∴∠1=∠4,(6分) 又∵∠BFC=∠BOA,BC=AB, ∴△OAB≌△FCB(AAS),(7分) ∴CF=OA=4,BO=BF. ∴四边形OHFB为正方形, ∴HF=OB=3, ∴点C到OE的距离CH=CF+HF=4+3=7.(8分)
复制答案
考点分析:
相关试题推荐
甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打笫一场比赛.
(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率;
(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.
查看答案
已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和π)《根据2011江苏扬州市中考试题改编》

manfen5.com 满分网 查看答案
列方程或方程组解应用题:
某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染、请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?
查看答案
如图,有四条互相不平行的直线L1、L2、L3、L4所截出的八个角.请你任意选择其中的三个角(不可选择未标注的角),尝试找到它们的关系,并选择其中一组予以证明.

manfen5.com 满分网 查看答案
先化简manfen5.com 满分网,然后从manfen5.com 满分网中选取一个你认为合适的数作为x的值代入求值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.