满分5 > 初中数学试题 >

如图,二次函数的图象经过点D(0,),且顶点C的横坐标为4,该图象在x轴上截得的...

如图,二次函数的图象经过点D(0,manfen5.com 满分网),且顶点C的横坐标为4,该图象在x轴上截得的线段AB的长为6.
(1)求二次函数的解析式;
(2)在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;
(3)在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.

manfen5.com 满分网
(1)已知了顶点的横坐标,可用顶点式来设二次函数的解析式如:y=a(x-4)2+k,根据二次函数过点(0,),可得出=16a+k;由于A、B关于x=4对称,且AB=6,不难得出A、B的坐标为(1,0),(7,0),可将它们的坐标代入解析式中即可求出a、k的值. (2)本题的关键是确定P的位置,由于对称轴垂直平分AB,因此P不论在对称轴的什么位置都有PA=PB,连接DB,如果P是交点时,PA+PD的长就是BD的长,两点之间线段最短,因此要想PA+PD最小,P必为DB与对称轴的交点.可根据B、D的坐标求出BD所在直线的解析式,然后求出与抛物线对称轴的交点.即可得出P点的坐标. (3)由于三角形ABC是等腰三角形,要想使QAB与三角形ABC相似,三角形QAB必须为等腰三角形.要分两种情况进行讨论: ①当Q在x轴下方时,Q,C重合,Q点的坐标就是C点的坐标. ②当Q在x轴上方时,应该有两个符合条件的点,抛物线的对称轴左右两侧各一个,且这两点关于抛物线的对称轴相对称.因此只需求出一点的坐标即可.以AQ=AB为例:可过Q作x轴的垂线,在构建的直角三角形中,根据BQ即AB的长以及∠QBx的度数来求出Q的坐标.然后根据对称性求出另外一点Q的坐标. 【解析】 (1)设二次函数的解析式为:y=a(x-h)2+k ∵顶点C的横坐标为4,且过点(0,) ∴y=a(x-4)2+k,=16a+k① 又∵对称轴为直线x=4,图象在x轴上截得的线段长为6 ∴A(1,0),B(7,0) ∴0=9a+k② 由①②解得a=,k=- ∴二次函数的解析式为:y=(x-4)2- (2)∵点A、B关于直线x=4对称 ∴PA=PB ∴PA+PD=PB+PD≥DB ∴当点P在线段DB上时PA+PD取得最小值 ∴DB与对称轴的交点即为所求点P 设直线x=4与x轴交于点M ∵PM∥OD, ∴∠BPM=∠BDO, 又∵∠PBM=∠DBO ∴△BPM∽△BDO ∴ ∴ ∴点P的坐标为(4,) (3)由(1)知点C(4,), 又∵AM=3, ∴在Rt△AMC中,cot∠ACM=, ∴∠ACM=60°, ∵AC=BC, ∴∠ACB=120° ①当点Q在x轴上方时,过Q作QN⊥x轴于N 如果AB=BQ,由△ABC∽△ABQ有 BQ=6,∠ABQ=120°,则∠QBN=60° ∴QN=3,BN=3,ON=10, 此时点Q(10,), 如果AB=AQ,由对称性知Q(-2,) ②当点Q在x轴下方时,△QAB就是△ACB, 此时点Q的坐标是(4,), 经检验,点(10,)与(-2,)都在抛物线上 综上所述,存在这样的点Q,使△QAB∽△ABC 点Q的坐标为(10,)或(-2,)或(4,).
复制答案
考点分析:
相关试题推荐
在平行四边形ABCD中,AB=5,AD=3,sinA=manfen5.com 满分网,点P是AB上一动点,(点P不与点A、点B重合),过点P作PQ∥AD交BD于Q,连结CQ,设AP的长为x,四边形QPBC的面积为y.
(1)计算平行四边形ABCD的面积;
(2)写出y关于x的函数解析式,并指出自变量x的取值范围;
(3)是否存在实数x,使得S△BPQ=S△BCQ?如果存在,求出x的值;如果不存在,请说明理由.

manfen5.com 满分网 查看答案
某公司有甲,乙两个绿色农产品种植基地,在收获期这两个基地当天收获的某种农产品,一部分存入仓库,另一部分运往外地销售,根据经验,该农产品在收获过程中两个种植基地累积总产量y(吨)与收获天数x(天)满足函数关系y=2x+3(1≤x≤10且x为整数).该农产品在收获过程中甲,乙两基地累积产量分别占两基地累积总产量的百分比和甲,乙两基地累积存入仓库的量分别占甲,乙两基地的累积产量的百分比如下表:
项目
百分比
种植基地
该基地的累积产量占两基地累积总产量的百分比该基地累积存入仓库的量占该基地的累积产量的百分比
60%85%
40%22.5%
(1)请用含y的代数式分别表示在收获过程中甲,乙两个基地累积存入仓库的量;
(2)设在收获过程中甲,乙两基地累积存入仓库的该种农产品的总量为p(吨),请求出p(吨)与收获天数x(天)的函数关系式;
(3)在(2)的基础上,若仓库内原有该种农产品42.6吨,为满足本地市场需求,在此收获期开始的同时,每天从仓库调出一部分该种农产品投入本地市场,若在本地市场售出该种农产品总量m(吨)与收获天x(天)满足函数关系m=-x2+13.2x-1.6(1≤x≤10且x为整数).问在此收获期内连续销售几天,该农产品库存量达到最低值?最低库存量是多少吨?
查看答案
如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦DE⊥AB分别交⊙O于E,交AB于H,交AC于F.P是ED延长线上一点且PC=PF.
(1)求证:PC是⊙O的切线;
(2)点D在劣弧AC什么位置时,才能使AD2=DE•DF,为什么?
(3)在(2)的条件下,若OH=1,AH=2,求弦AC的长.

manfen5.com 满分网 查看答案
如图,某风景区内有一古塔AB,在塔的一侧有一建筑物,当光线与水平面的夹角是30°时,塔在建筑物的墙上留下了高为3米的影子CD;而当光线与地面的夹角是45°时,塔尖A在地面上的影子E与建筑物的距离EC为15米(B、E、C在一条直线上),求塔AB的高度(结果保留根号).

manfen5.com 满分网 查看答案
迎北京奥运,促全民健身.某市体委为了解市民参加体育锻炼的情况,采取随机抽样方法抽查了部分市民每天参加体育锻炼的情况,分成A,B,C三类进行统计:A.每天锻炼2小时以上;B.每天锻炼1~2小时(包括1小时和2小时);C.每天锻炼1小时以下.
图一,图二是根据调查结果绘制的两幅不完整的统计图,请根据统计图提供的信息,回答下列问题:
(1)这次抽查中,一共抽查了多少名市民;
(2)求“类型A”在扇形图中所占的圆心角;
(3)在统计图一中,将“类型C”的部分补充完整.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.