满分5 > 初中数学试题 >

库尔勒某乡A,B两村盛产香梨,A村有香梨200吨,B村有香梨300吨,现将这些香...

库尔勒某乡A,B两村盛产香梨,A村有香梨200吨,B村有香梨300吨,现将这些香梨运到C,D两个冷藏仓库.已知C仓库可储存240吨,D仓库可储存260吨,从A村运往C,D两处的费用分别为每吨40元和45元;从B村运往C,D两处的费用分别为每吨25元和32元.设从A村运往C仓库的香梨为x吨,A,B两村运香梨往两仓库的运输费用分别为yA元,yB元.
(1)请填写下表,并求出yA,yB与x之间的函数关系式;
CD总计
Ax吨200吨
B300吨
总计240吨260吨500吨
(2)当x为何值时,A村的运费较少?
(3)请问怎样调运,才能使两村的运费之和最小?求出最小值.
(1)由A村共有香梨200吨,从A村运往C仓库x吨,剩下的运往D仓库,故运往D仓库为(200-x)吨,由A村已经运往C仓库x吨,C仓库可储存240吨,故B村应往C仓库运(240-x)吨,剩下的运往D仓库,剩下的为300-(240-x),化简后即可得到B村运往D仓库的吨数,填表即可,由从A村运往C,D两处的费用分别为每吨40元和45元;从B村运往C,D两处的费用分别为每吨25元和32元,由表格中的代数式,即可分别列出yA,yB与x之间的函数关系式; (2)由第一问表示出的yA与x之间的函数关系式得到此函数为一次函数,根据x的系数为负数,得到此一次函数为减函数,且0≤x≤200,故x取最大200时,yA有最小值,即为A村的运费较少时x的值; (3)设两村的运费之和为W,W=yA+yB,把第一问表示出的两函数解析式代入,合并后得到W为关于x的一次函数,且x的系数大于0,可得出此一次函数图象是y随x的增大而增大,可得出x=0时,W有最小值,将x=0代入W关于x的函数关系式中,即可求出W的最小值. 【解析】 (1)填写如下: C D 总计 A x吨 (200-x)吨 200吨 B (240-x)吨 (60+x)吨 300吨 总计 240吨 260吨 500吨 由题意得:yA=40x+45(200-x)=-5x+9000;yB=25(240-x)+32(60+x)=7x+7920; (2)对于yA=-5x+9000(0≤x≤200), ∵k=-5<0, ∴此一次函数y随x的增大而减小, 则当x=200吨时,yA最小,其最小值为-5×200+9000=8000(元); (3)设两村的运费之和为W, 则W=yA+yB=-5x+9000+7x+7920=2x+16920(0≤x≤200), ∵k=2>0, ∴此一次函数为增函数, 则当x=0时,W有最小值,W最小值为16920元. 此时调运方案为:从A村运往C仓库0吨,运往D仓库为200吨,B村应往C仓库运240吨,运往D仓库60吨.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,AB是⊙O的直径,AM,BN分别切⊙O于点A,B,CD交AM,BN于点D,C,DO平分∠ADC.
(1)求证:CD是⊙O的切线;
(2)若AD=4,BC=9,求⊙O的半径R.
查看答案
已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.
①求证:CD=AN;
②若∠AMD=2∠MCD,求证:四边形ADCN是矩形.

manfen5.com 满分网 查看答案
如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿岸向前走30m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.
manfen5.com 满分网
查看答案
在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.
(1)从A、D、E、F四个点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是______
(2)从A、D、E、F四个点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形是平行四边形的概率是______(用树状图或列表法求解).

manfen5.com 满分网 查看答案
如图,已知线段AB,
(1)线段AB为腰作一个黄金三角形(尺规作图,要求保留作图痕迹,不必写出作法);
(友情提示:三角形两边之比为黄金比的等腰三角形叫做黄金三角形)
(2)若AB=2,求出你所作的黄金三角形的周长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.