满分5 > 初中数学试题 >

如图,抛物线y=ax2+bx+c(a>0)交x轴于A、B两点(A点在B点左侧),...

如图,抛物线y=ax2+bx+c(a>0)交x轴于A、B两点(A点在B点左侧),交y轴于点C.已知B(8,0),tan∠ABC=manfen5.com 满分网,△ABC的面积为8.
(1)求抛物线的解析式;
(2)若动直线EF(EF∥x轴)从点C开始,以每秒1个长度单位的速度沿y轴负方向平移,且交y轴、线段BC于E、F两点,动点P同时从点B出发,在线段OB上以每秒2个单位的速度向原点O运动.连接FP,设运动时间t秒.当t为何值时,manfen5.com 满分网的值最大,求出最大值;
(3)在满足(2)的条件下,是否存在t的值,使以P、B、F为顶点的三角形与△ABC相似.若存在,试求出t的值;若不存在,请说明理由.
manfen5.com 满分网
(1)求出A,B,C,三点的坐标代入抛物线y=ax2+bx+c,问题得解. (2)利用相似三角形得到,和t的关系式问题得解. (3)因为相似对应的不唯一性,需要讨论,分别求出满足题意的t的值. 【解析】 (1)由题意知∠COB=90°B(8,0)OB=8, 在Rt△OBC中tan∠ABC=OC=OB×tan∠ABC=8×=4, ∴C(0,4),, ∴AB=4, ∴A(4,0) 把A、B、C三点的坐标代入y=ax2+bx+c(a>0)得, 解得.所以抛物线的解析式为; (2)C(0,4)B(8,0)E(0,4-t)(t>0), OB=2OC=8CE=tBP=2tOP=8-2t, ∵EF∥OB, ∴△CEF∽△COB, ∴, 则有得EF=2t, =. 当t=2时有最大值2. (3)存在符合条件的t值,使△PBF与△ABC相似. C(0,4),B(8,0),E(0,4-t),F(2t,4-t),P(8-2t,0)(t>0), AB=4BP=2t,BF=, ∵OC=4, ∴BC=. ①当点P与A、F与C对应,即△PBF∽△ABC, 则, 代入得, 解得; ②当点P与C、F与A对应,即△PBF∽△CBA, 则, 代入得, 解得(不合题意,舍去). 综上所述:符合条件的和.
复制答案
考点分析:
相关试题推荐
某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)
 裁法一裁法二裁法三
A型板材块数12
B型板材块数2mn
设所购的标准板材全部裁完,其中按裁法一裁x张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.
(1)上表中,m=______,n=______
(2)分别求出y与x和z与x的函数关系式;
(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q最小,此时按三种裁法各裁标准板材多少张?

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,点P在AB的延长线上,弦CE交AB于点D.连接OE、AC,已知∠POE=2∠CAB,∠P=∠E.
(1)求证:CE⊥AB;
(2)求证:PC是⊙O的切线;
(3)若BD=20D,PB=9,求⊙O的半径及tan∠P的值.

manfen5.com 满分网 查看答案
如图,在观测点E测得小山上铁塔顶A的仰角为60°,铁塔底部B的仰角为45度.已知塔高AB=20m,观察点E到地面的距离EF=35m,求小山BD的高.(精确到0.1海里,manfen5.com 满分网≈1.732)

manfen5.com 满分网 查看答案
为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛,为了解本次竞赛成绩情况,从中抽取了50名学生的成绩(得分取正整数,满分为100分)进行统计,请你根据下面尚未完成的频数分布表和频数分布直方图,解答下列问题:
分组频数频率
50.5-60.540.08
60.5-70.580.16
70.5-80.5100.20
80.5-90.5160.32
90.5-100.5
合计
(1)填充频数分布表中的空格;
(2)补全频数分布直方图;
(3)全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?若成绩在90分以上(不含90分)为优秀,则请你估计一下该校成绩优秀学生约为多少人?

manfen5.com 满分网 查看答案
manfen5.com 满分网,求代数式manfen5.com 满分网的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.