满分5 > 初中数学试题 >

如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE...

如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=manfen5.com 满分网.下列结论:①△APD≌△AEB;②点B到直线AE的距离为manfen5.com 满分网;③EB⊥ED;④S△APD+S△APB=1+manfen5.com 满分网;⑤S正方形ABCD=4+manfen5.com 满分网.其中正确结论的序号是   
manfen5.com 满分网
①首先利用已知条件根据边角边可以证明△APD≌△AEB; ②由①可得∠BEP=90°,故BE不垂直于AE过点B作BM⊥AE延长线于M,由①得∠AEB=135°所以∠EMB=45°,所以△EMB是等腰Rt△,故B到直线AE距离为BF=,故②是错误的; ③利用全等三角形的性质和对顶角相等即可判定③说法正确; ④由△APD≌△AEB,可知S△APD+S△APB=S△AEB+S△APB,然后利用已知条件计算即可判定; ⑤连接BD,根据三角形的面积公式得到S△BPD=PD×BE=,所以S△ABD=S△APD+S△APB+S△BPD=2+,由此即可判定. 【解析】 由边角边定理易知△APD≌△AEB,故①正确; 由△APD≌△AEB得,∠AEP=∠APE=45°,从而∠APD=∠AEB=135°, 所以∠BEP=90°, 过B作BF⊥AE,交AE的延长线于F,则BF的长是点B到直线AE的距离, 在△AEP中,由勾股定理得PE=, 在△BEP中,PB=,PE=,由勾股定理得:BE=, ∵∠PAE=∠PEB=∠EFB=90°,AE=AP, ∴∠AEP=45°, ∴∠BEF=180°-45°-90°=45°, ∴∠EBF=45°, ∴EF=BF, 在△EFB中,由勾股定理得:EF=BF=, 故②是错误的; 因为△APD≌△AEB,所以∠ADP=∠ABE,而对顶角相等,所以③是正确的; 由△APD≌△AEB, ∴PD=BE=, 可知S△APD+S△APB=S△AEB+S△APB=S△AEP+S△BEP=+,因此④是错误的; 连接BD,则S△BPD=PD×BE=, 所以S△ABD=S△APD+S△APB+S△BPD=2+, 所以S正方形ABCD=2S△ABD=4+. 综上可知,正确的有①③⑤.
复制答案
考点分析:
相关试题推荐
如图,在等腰△ABC中,AB=AC,∠A=120°,AB的垂直平分线交AB于M,交BC于N,且MN=1,则BC的长为   
manfen5.com 满分网 查看答案
样本数据3,6,a,4,2,5的平均数是5,则这组数据的中位数是    查看答案
分解因式:ax2-2ax+a=    查看答案
如图,AB是⊙O的直径,M是⊙O上一点,MN⊥AB,垂足为N.P、Q分别是manfen5.com 满分网manfen5.com 满分网上一点(不与端点重合),如果∠MNP=∠MNQ,下面结论:①∠1=∠2;②∠P+∠Q=180°;③∠Q=∠PMN;④PM=QM;⑤MN2=PN•QN.其中正确的是( )
manfen5.com 满分网
A.①②③
B.①③⑤
C.④⑤
D.①②⑤
查看答案
如图,已知等腰Rt△ABC中,∠B=90°,AB=BC=8cm,点P是线段AB上的点,点Q是线段BC延长线上的点,且AP=CQ,PQ与直线AC相交于点D.作PE⊥AC于点E,则线段DE的长度( )
manfen5.com 满分网
A.为4cm
B.为5cm
C.为manfen5.com 满分网cm
D.不能确定
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.