满分5 > 初中数学试题 >

如图,已知AB为⊙O的直径,PA,PC是⊙O的切线,A,C为切点,∠BAC=30...

如图,已知AB为⊙O的直径,PA,PC是⊙O的切线,A,C为切点,∠BAC=30°.
(Ⅰ)求∠P的大小;
(Ⅱ)若AB=2,求PA的长(结果保留根号).

manfen5.com 满分网
(Ⅰ)根据切线的性质及切线长定理可证明△PAC为等边三角形,则∠P的大小可求; (Ⅱ)由(Ⅰ)知PA=PC,在Rt△ACB中,利用30°的特殊角度可求得AC的长. 【解析】 (Ⅰ)∵PA是⊙O的切线,AB为⊙O的直径, ∴PA⊥AB, ∴∠BAP=90°; ∵∠BAC=30°, ∴∠CAP=90°-∠BAC=60°. 又∵PA、PC切⊙O于点A、C, ∴PA=PC, ∴△PAC为等边三角形, ∴∠P=60°. (Ⅱ)如图,连接BC,则∠ACB=90°. 在Rt△ACB中,AB=2,∠BAC=30°, ∵cos∠BAC=, ∴AC=AB•cos∠BAC=2cos30°=. ∵△PAC为等边三角形, ∴PA=AC, ∴PA=.
复制答案
考点分析:
相关试题推荐
解方程组:manfen5.com 满分网
查看答案
计算:manfen5.com 满分网
查看答案
李师傅随机抽查了本单位今年四月份里6天的日用水量(单位:吨)结果如下:7,8,8,7,6,6,根据这些数据,估计四月份本单位用水总量为    吨. 查看答案
因式分【解析】
a2-b2-2b-1=    查看答案
若3a2-a-2=0,则5+2a-6a2=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.