满分5 > 初中数学试题 >

如图,⊙O的直径AB=4,C、D为圆周上两点,且四边形OBCD是菱形,过点D的直...

如图,⊙O的直径AB=4,C、D为圆周上两点,且四边形OBCD是菱形,过点D的直线EF∥AC,交BA、BC的延长线于点E、F.
(1)求证:EF是⊙O的切线;
(2)求DE的长.

manfen5.com 满分网
(1)要证EF是⊙O的切线,只要证明∠2=90°即可. (2)连接OC,根据菱形的判定和性质先求出∠EOD=∠B=60°,再根据三角函数的知识求出DE的长. (1)证明:∵AB是⊙O的直径, ∴∠ACB=90°. ∵四边形OBCD是菱形, ∴OD∥BC. ∴∠1=∠ACB=90°. ∵EF∥AC, ∴∠2=∠1=90°. ∵OD是半径, ∴EF是⊙O的切线. (2)【解析】 连接OC, ∵直径AB=4, ∴半径OB=OC=2. ∵四边形OBCD是菱形, ∴OD=BC=OB=OC=2. ∴∠B=60°. ∵OD∥BC, ∴∠EOD=∠B=60°. 在Rt△EOD中,.
复制答案
考点分析:
相关试题推荐
甲乙二人周末到惠州红花湖环湖旅行,同时从起点(0公理处)出发,环湖步行18千米后回到起点处,甲比乙每小时多走1千米,结果比乙早到36分钟.问二人每小时各走几千米?
查看答案
学校为了解全校1600名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项.且不能不选.将调查得到的结果绘制成如图所示的频数分布直方图和扇形统计图(均不完整).
manfen5.com 满分网
(1)问:在这次调查中,一共抽取了多少名学生?
(2)补全频数分布直方图;
(3)估计全校所有学生中有多少人乘坐公交车上学?
查看答案
在数学活动课上,九年级(1)班数学兴趣小组的同学们测量校园内一棵大树(如图)的高度,设计的方案及测量数据如下:
(1)在大树前的平地上选择一点A,测得由点A看大树顶端C的仰角为35°;
(2)在点A和大树之间选择一点B(A,B,D在同一直线上),测得由点B看大树顶端C的仰角恰好为45°;
(3)量出A,B两点间的距离为4.5米.
请你根据以上数据求出大树CD的高度.(精确到0.1米)(可能用到的参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)

manfen5.com 满分网 查看答案
如图,平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:∠BAE=∠DCF.

manfen5.com 满分网 查看答案
已知正比例函数y=kx与反比例函数y=manfen5.com 满分网的图象都过A(m,1)点,求出正比例函数解析式及另一个交点的坐标.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.