满分5 > 初中数学试题 >

如图,边长为4的等边三角形AOB的顶点O在坐标原点,点A在x轴正半轴上,点B在第...

如图,边长为4的等边三角形AOB的顶点O在坐标原点,点A在x轴正半轴上,点B在第一象限.一动点P沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.将线段BP的中点绕点P按顺时针方向旋转60°得点C,点C随点P的运动而运动,连接CP、CA,过点P作PD⊥OB于点D.
(1)填空:PD的长为______
(1)由三角形AOB是等边三角形可以得出OB=OA=AB=4,∠BOA=∠OAB=∠ABO=60°,由PD⊥OB就可以得出∠PDO=90°,再通过解直角三角形就可以用t把PD表示出来. (2)如图(1)过C作CE⊥OA于E,可得△PCE∽△BPD,利用三角形相似的性质就可以CE和PE的值,从而可以表示出C的坐标. (3)在P的移动过程中使△PCA为直角三角形分两种情况,当∠PCA=90°或∠PAC=90°时就可以求出相对应的t值 (4)射出C点的坐标,表示出坐标的函数关系式确定C的运动轨迹的图象为线段,再根据条件就可以求出起点的坐标和终点的坐标,运用两点间的距离公式就可以求出其值. 【解析】 (1)∵△AOB是等边三角形, ∴OB=OA=AB=4,∠BOA=∠OAB=∠ABO=60°. ∵PD⊥OB, ∴∠PDO=90°, ∴∠OPD=30°, ∴OD=OP. ∵OP=t, ∴OD=t,在Rt△OPD中,由勾股定理,得 PD= 故答案为: (2)如图(1)过C作CE⊥OA于E, ∴∠PEC=90°, ∵OD=t, ∴BD=4-t. ∵线段BP的中点绕点P按顺时针方向旋转60°得点C, ∴∠BPC=60°. ∵∠OPD=30°, ∴∠BPD+∠CPE=90°. ∴∠DBP=∠CPE ∴△PCE∽△BPD ∴, ∴,, ∴CE=,PE=,OE=, ∴C(,). (3)如图(3)当∠PCA=90度时,作CF⊥PA, ∴△PCF∽△ACF, ∴, ∴CF2=PF•AF, ∵PF=2-t,AF=4-OF=2-t CF=, ∴()2=(2-t)(2-t), 求得t=2,这时P是OA的中点. 如图(2)当∠CAP=90°时,C的横坐标就是4, ∴2+t=4 ∴t= (4)设C(x,y), ∴x=2+t,y=, ∴y=x-, ∴C点的运动痕迹是一条线段(0≤t≤4). 当t=0时,C1(2,0), 当t=4时,C2(5,), ∴由两点间的距离公式得:C1C2=2. 故答案为:2.
复制答案
考点分析:
相关试题推荐
如图,菱形ABCD中,AB=10,manfen5.com 满分网,点E在AB上,AE=4,过点E作EF∥AD,交CD于F,点P从点A出发以1个单位/s的速度沿着线段AB向终点B运动,同时点Q从点E出发也以1个单位/s的速度沿着线段EF向终点F运动,设运动时间为t(s).
(1)填空:当t=5时,PQ=______
查看答案
如图,Rt△AOB中,∠A=90°,以O为坐标原点建立直角坐标系,使点A在x轴正半轴上,OA=2,AB=8,点C为AB边的中点,抛物线的顶点是原点O,且经过C点.
(1)填空:直线OC的解析式为______;抛物线的解析式为______
(2)现将该抛物线沿着线段OC移动,使其顶点M始终在线段OC上(包括端点O、C),抛物线与y轴的交点为D,与AB边的交点为E;
①是否存在这样的点D,使四边形BDOC为平行四边形?如存在,求出此时抛物线的解析式;如不存在,说明理由;
②设△BOE的面积为S,求S的取值范围.
manfen5.com 满分网
查看答案
台州奉化一果农有一批经过挑选的橙子要包装出售,现随意挑选10个,橙子测量直径,数据分别为(单位:cm)7.9,7.8,8,7.9,8,8,7.9,7.9,7.8,7.8.橙子内包装模型的横截面如图(1),凹型为半圆形,半圆的直径为这批橙子大约平均值加0.2cm,现用纸箱作外包装,内包装嵌入纸箱内,每箱装一层,一层装5×4个如图(2)所示,纸箱的高度比内包装高5cm.
(1)估计这批橙子的平均直径大约是多少?
(2)设计纸箱(不加盖子)的长、宽、高各为多少?(数据保留整数,设计时长和宽比内包装各需加长0.5cm).
(3)加工成一只纸箱的硬纸板面积较合理需多少cm2,请给出一种方案.(不计接头重叠部分,盖子顶面用透明纸)manfen5.com 满分网
查看答案
某厂家新开发的一种摩托车如图所示,它的大灯A射出的光线AB、AC与地面MN的夹角分别为8°和10°,大灯A离地面距离1 m.
manfen5.com 满分网
(1)该车大灯照亮地面的宽度BC约是多少(不考虑其它因素)?
(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2 s,从发现危险到摩托车完全停下所行驶的距离叫做最小安全距离,某人以60 km/h的速度驾驶该车,从60 km/h到摩托车停止的刹车距离是manfen5.com 满分网m,请判断该车大灯的设计是否能满足最小安全距离的要求,请说明理由.
(参考数据:manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
查看答案
已知:如图,AB是⊙O的直径,C、D为⊙O上两点,CF⊥AB于点F,CE⊥AD的延长线于点E,且CE=CF.
(1)求证:CE是⊙O的切线;
(2)若AD=CD=6,求四边形ABCD的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.