在PA上截取PE=PB,连接BE,则有△BEP是等边三角形,由SAS证得△ABE≌△CBP,则AE=CP,得到AP=AE+PE=PB+PC,即可求出AP的值,再证明△ABD∽△APB,得到BD和AB的数量关系,再证明△BPD∽△APC,即可求出PD的值.
【解析】
在PA上截取PE=PB,连接BE;
∵△ABC是等边三角形,∠ACB=APB,
∴∠ACB=∠APB=60°,AB=BC;
∴△BEP是等边三角形,BE=PE=PB;
∴∠ACB-∠EBC=APB-∠EBC=60°-∠EBC;
∴∠ABE=∠CBP;
∵在△ABE与CBP中,
,
∴△ABE≌△CBP;
∴AE=CP;
∴AP=AE+PE=PB+PC.
∵PB=3,PC=6,
∴PA=6+3=9,
∵∠BAP=∠DAB(公共角),
∠ABC=∠ACB=∠APB=60°,
∴△ABD∽△APD,
∴,
∴,
∴BD=AB=AC,
∵∠PBD=∠PAC,
∠BPD=∠APC=60°,
∴△BPD∽△APC,
∴,
∴,
∴PD=6×=2.
故答案为2.