已知:抛物线

,其中a、b、c是△ABC的∠A、∠B、∠C的对边.
(1)求证:抛物线与x轴必有两个不同交点;
(2)设直线y=ax-bc与抛物线交于E、F两点,与y轴交于点M,抛物线与y轴交于点N,若抛物线的对称轴为x=a,△MNE与△MNF的面积比为5:1,求证:△ABC是等边三角形;
(3)在(2)的条件下,设△ABC的面积为

,抛物线与x轴交于点P、Q,问是否存在过P、Q两点且与y轴相切的圆?若存在,求出圆的圆心坐标,若不存在,请说明理由.
考点分析:
相关试题推荐
如图,AB是⊙O的直径,BC是⊙O的弦,⊙O的割线PDE垂直AB于点F,交BC于点G,连接PC,∠BAC=∠BCP,求解下列问题:
(1)求证:CP是⊙O的切线.
(2)当∠ABC=30°,BG=

,CG=

时,求以PD、PE的长为两根的一元二次方程.
(3)若(1)的条件不变,当点C在劣弧AD上运动时,应再具备什么条件可使结论BG
2=BF•BO成立?试写出你的猜想,并说明理由.
查看答案
实践应用:某校广场有一段25米长的旧围栏,现打算利用该围栏的一部分(或全部)为一边,围成一块100平方米的长方形草坪.如图,四边形CDEF,CD<CF,已知整修旧围栏的价格是每米1.75元,建新围栏的价格是每米4.5元.
(1)若计划修建费为150元,能否完成该草坪围栏修造任务?
(2)若计划修建费为120元,能否完成该草坪围坪修建任务?若能完成,请算出利用旧围栏多少米;若不能完成,请说明理由.
查看答案
甲、乙两人两次同时在同一粮店购买粮食(假设两次购买粮食单价不同),甲每次购买粮食100公斤,乙每次购买粮食用去100元,设甲、乙两人第一次购买粮食的单价x元/公斤,第二次购买粮食的单价y元/公斤.
(1)用含x,y的代数式表示甲两次购买粮食共要付粮款______元,乙两次共购买______公斤粮食,若甲两次购粮的平均单价为每公斤Q
1元,乙两次购粮的平均单位为每公斤Q
2元,则Q
1=______,Q
2=______.
(2)若规定两次购粮的平均单价低者,购粮方式合算,请你判断甲、乙两人的购粮方式哪一个更合算些?并说明理由.
查看答案
如图,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影长约为10m,则大树的长约为
m(保留两个有效数字,下列数据供选用:

,

).
查看答案
如图,E、F是平行四边形ABCD对角线AC上两点,AE=CF.证明(1)△ABE≌△CDF;(2)BE∥DF.
查看答案