如图所示,抛物线y=ax
2+bx+c经过原点O,与x轴交于另一点N,直线y=kx+4与两坐标轴分别交于A、D两点,与抛物线交于B(1,m)、C(2,2)两点.
(1)求直线与抛物线的解析式;
(2)若抛物线在x轴上方的部分有一动点P(x,y),设∠PON=α,求当△PON的面积最大时tanα的值;
(3)若动点P保持(2)中的运动路线,问是否存在点P,使得△POA的面积等于△PON面积的

?若存在,请求出点P的坐标;若不存在,请说明理由.
考点分析:
相关试题推荐
在图①至图③中,△ABC为直角三角形,且∠ABC=90°,∠A=30°,点P在AC上,∠MPN=90°.
(1)当点P为线段AC的中点,点M、N分别在线段AB、BC上,且PM⊥AB,PN⊥BC(如图①)时,则PN和PM的数量关系是:PN=______
查看答案
如图①,梯形ABCD中,DC∥AB,DE⊥AB于点E.
阅读理【解析】
在图①中,延长梯形ABCD的两腰AD、BC交于点P,过点D作DF∥CB交AB于点F,得到图②;四边形BCDF的面积为S,△ADF的面积S
1,△PDC的面积S
2.

解决问题:
(1)在图②中,若DC=2,AB=8,DE=3,则S=______,S
1=______,S
2=______;
(2)在图②中,若AB=a,DC=b,DE=h,则

=______,并写出理由;
拓展应用:
如图③,▱DEFC的四个顶点在△PAB的三边上,若△PDC、△ADE、△CFB的面积分别为2、3、5,试利用 (2 )中的结论求△PAB的面积.
查看答案
如图,直线y=kx+b与反比例函数

(x<0)的图象相交于点A(-2,4)、点B(-4,n).
(1)求反比例函数和一次函数的解析式;
(2)求直线AB与x轴的交点C的坐标及△AOC的面积;
(3)根据图象回答:当x为何值时,

(请直接写出答案).
查看答案
在一个不透明的盒子里,装有四个分别写有数字1、2、3、4的乒乓球(形状、大小一样),先从盒子里随机取出一个乒乓球,记下数字后放回盒子,摇匀后再随机取 出一个乒乓球,记下数字.
(1)请用树状图或列表的方法求两次取出乒乓球上的数字相同的概率;
(2)求两次取出乒乓球上的数字之积小于6的概率.
查看答案
如图,Rt△ABC中,∠C=90°,∠A=60°,AB=4.
(1)用尺规作∠BAC的平分线AP,交BC于点F(保留作图痕迹,不写作法与证明);
(2)求AF的长.
查看答案