满分5 > 初中数学试题 >

在平面直角坐标系xOy中,已知抛物线y=-+c与x轴交于A、B两点(点A在点B的...

在平面直角坐标系xOy中,已知抛物线y=-manfen5.com 满分网+c与x轴交于A、B两点(点A在点B的左侧),交y轴的正半轴于点C,其顶点为M,MH⊥x轴于点H,MA交y轴于点N,sin∠MOH=manfen5.com 满分网
(1)求此抛物线的函数表达式;
(2)过H的直线与y轴相交于点P,过O,M两点作直线PH的垂线,垂足分别为E,F,若manfen5.com 满分网=manfen5.com 满分网时,求点P的坐标;
(3)将(1)中的抛物线沿y轴折叠,使点A落在点D处,连接MD,Q为(1)中的抛物线上的一动点,直线NQ交x轴于点G,当Q点在抛物线上运动时,是否存在点Q,使△ANG与△ADM相似?若存在,求出所有符合条件的直线QG的解析式;若不存在,请说明理由.

manfen5.com 满分网
(1)由抛物线y=-+c与x轴交于A、B两点(点A在点B的左侧),交y轴的正半轴于点C,其顶点为M,MH⊥x轴于点H,MA交y轴于点N,sin∠MOH=,求出c的值,进而求出抛物线方程; (2)如图1,由OE⊥PH,MF⊥PH,MH⊥OH,可证△OEH∽△HFM,可知HE,HF的比例关系,求出P点坐标; (3)首先求出D点坐标,写出直线MD的表达式,由两直线平行,两三角形相似,可得NG∥MD,直线QG解析式. 【解析】 (1)∵M为抛物线y=-+c的顶点, ∴M(2,c). ∴OH=2,MH=|c|. ∵a<0,且抛物线与x轴有交点, ∴c>0, ∴MH=c, ∵sin∠MOH=, ∴=. ∴OM=c, ∵OM2=OH2+MH2, ∴MH=c=4, ∴M(2,4), ∴抛物线的函数表达式为:y=-+4. (2)如图1,∵OE⊥PH,MF⊥PH,MH⊥OH, ∴∠EHO=∠FMH,∠OEH=∠HFM. ∴△OEH∽△HFM, ∴==, ∵=, ∴MF=HF, ∴∠OHP=∠FHM=45°, ∴OP=OH=2, ∴P(0,2). 如图2,同理可得,P(0,-2). (3)∵A(-1,0), ∴D(1,0), ∵M(2,4),D(1,0), ∴直线MD解析式:y=4x-4, ∵ON∥MH,∴△AON∽△AHM, ∴===, ∴AN=,ON=,N(0,). 如图3,若△ANG∽△AMD,可得NG∥MD, ∴直线QG解析式:y=4x+, 如图4,若△ANG∽△ADM,可得= ∴AG=, ∴G(,0), ∴QG:y=-x+, 综上所述,符合条件的所有直线QG的解析式为:y=4x+或y=-x+.
复制答案
考点分析:
相关试题推荐
已知:把Rt△ABC和Rt△DEF按如图甲摆放(点C与点E重合),点B、C(E)、F在同一条直线上.∠BAC=∠DEF=90°,∠ABC=45°,BC=9cm,DE=6cm,EF=8cm.如图乙,△DEF从图甲的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△DEF的顶点F出发,以3cm/s的速度沿FD向点D匀速移动.当点P移动到点D时,P点停止移动,△DEF也随之停止移动.DE与AC相交于点Q,连接BQ、PQ,设移动时间为t(s).解答下列问题:
(1)设三角形BQE的面积为y(cm2),求y与t之间的函数关系式,并写出自变量t的取值范围;
(2)当t为何值时,三角形DPQ为等腰三角形?
(3)是否存在某一时刻t,使P、Q、B三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.
manfen5.com 满分网
查看答案
2011年3月11日下午,日本东北部地区发生里氏9级特大地震和海啸灾害,造成重大人员伤亡和财产损失.强震发生后,中国军队将筹措到位的第一批次援日救灾物资打包成件,其中棉帐篷和毛巾被共320件,毛巾被比棉帐篷多80件.
(1)求打包成件的棉帐篷和毛巾被各多少件?
(2)现计划租用甲、乙两种飞机共8架,一次性将这批棉帐篷和毛巾被全部运往日本重灾区宫城县.已知甲种飞机最多可装毛巾被40件和棉帐篷10件,乙种货车最多可装毛巾被和棉帐篷各20件.则安排甲、乙两种飞机时有几种方案?请你帮助设计出来.
(3)在第(2)问的条件下,如果甲种飞机每架需付运输费4000元,乙种飞机每架需付运输费3600元.应选择哪种方案可使运输费最少?最少运输费是多少元?

manfen5.com 满分网 查看答案
如图,直线y=k1x+b与反比例函数manfen5.com 满分网(x>0)的图象交于A(1,6),B(a,3)两点.
(1)求k1、k2的值.
(2)直接写出manfen5.com 满分网时x的取值范围;
(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.

manfen5.com 满分网 查看答案
在Rt△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长,与BC的延长线交于点F.
(1)求证:BD=BF;
(2)若BC=6,AD=4,求⊙O的面积.

manfen5.com 满分网 查看答案
2011年全国两会在京召开,公众最关心哪些问题?901班学生就老百姓最关注的两会热点问题,在网络上发布了相应的调查问卷.到目前为止,共有不同年龄段的2880人参与,具体情况统计如下:
(1)请将统计表中遗漏的数据补上;
(2)求扇形图中表示30-35岁的扇形的圆心角的度数?
(3)在参加调查的30-35岁段中随机抽取一人,关心物价调控或医疗改革的概率是多少?
关心问题频数频率
收入分配900.25
住房问题0.15
物价调控360.1
医疗改革18
养老保险0.15
其他108
合计3601


manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.