满分5 > 初中数学试题 >

聪明好学的小云查阅有关资料发现:用不过圆锥顶点平行于一条母线的平面截圆锥所得的截...

聪明好学的小云查阅有关资料发现:用不过圆锥顶点平行于一条母线的平面截圆锥所得的截面为抛物面,即图1中曲线CFD为抛物线的一部分,如图1,圆锥体SAB的母线长为10,侧面积为50π,圆锥的截面CFD交母线SB于F,交底面⊙P于C、D,AB⊥CD于O,OF∥SA且OF⊥CD,OP=4,OB=9.
(1)求底面圆的半径AP的长及圆锥侧面展开图的圆心角的度数;
(2)当以CD所在直线为x轴,OF所在的直线为y轴建立如图2所示的直角坐标系,求过C、F、D三点的抛物线的函数关系式.
manfen5.com 满分网
(1)根据圆锥侧面积的计算方法即可求得底面圆半径AP的长;由于圆锥侧面展开图是个扇形,且弧长等腰底面圆的周长,可据此求出侧面展开图的圆心角的度数; (2)根据(1)得出的底面圆的半径即可得到BO、AB的长,由于OF∥AS,易证得△OBF∽△ABS,根据相似三角形所得到的比例线段即可求得OF的长,由此可得到F点的坐标;连接AC、BC;根据圆周角定理知∠ACB=90°,在Rt△ACB中,OC⊥AB,根据射影定理即可求出OC的长,由此可得到C点的坐标;根据C、F的坐标,即可用待定系数法求出抛物线的解析式. 【解析】 (1)∵50π=π•AP•10 ∴AP=5; ∵2π•5= ∴n=180°; 故底面圆的半径长为5,侧面展开图的圆心角的度数为180°; (2)由OF∥SA得△OFB∽△ASB, ∴=, ∴= ∴OF=9, ∴F(0,9); 连接AC,BC,则∠ACB=90°; Rt△ABC中,OC⊥AB,OA=1,OB=9; 由射影定理可得CO2=1×9, ∴CO=3, ∴C(-3,0); 设抛物线的解析式为:y=ax2+c,则有: , 解得; ∴抛物线的解析式为:y=-x2+9.
复制答案
考点分析:
相关试题推荐
如图,在△ABD和△ADE中,AB=AD,AC=AE,∠BAD=∠CAE,连接BC、DE相交于点F,BC与AD相交于点G
(1)试判断线段BC、DE的数量关系,并说明理由;
(2)如果∠ABC=∠CBD,那么线段FD是线段FG和FB的比例中项吗?为什么?

manfen5.com 满分网 查看答案
如图所示,A、B两个旅游点从2001年至2005年“五•一”的旅游人数变化情况分别用实线和虚线表示.根据图中所示解答以下问题:
(1)B旅游点的旅游人数相对上一年,增长最快的是哪一年?
(2)求A、B两个旅游点从2001到2005年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价;
(3)A旅游点现在的门票价格为每人80元,为保护旅游点环境和游客的安全,A旅游点的最佳接待人数为4万人,为控制游客数量,A旅游点决定提高门票价格.已知门票价格x(元)与游客人数y(万人)满足函数关系y=5-manfen5.com 满分网.若要使A旅游点的游客人数不超过4万人,则门票价格至少应提高多少?
manfen5.com 满分网
查看答案
如图,已知边长为a的正方形ABCD.求作该正方形绕点A逆时针旋转30°后的正方形AB1C1D1.(说明:请用无刻度的直尺和圆规作图,并保留作图痕迹)

manfen5.com 满分网 查看答案
先化简,再求代数式的值.
manfen5.com 满分网-manfen5.com 满分网)÷manfen5.com 满分网,其中tan60°>a>sin30°,请你取一个合适的数作为a的值代入求值.
查看答案
在△ABC中,cosB=manfen5.com 满分网,∠C=45°,AB=8,以点B为圆心4为半径的⊙B与以点C为圆心的⊙C相切,则⊙C的半径为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.