满分5 > 初中数学试题 >

阅读下面的情景对话,然后解答问题: (1)根据“奇异三角形”的定义,请你判断小华...

阅读下面的情景对话,然后解答问题:
manfen5.com 满分网
(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题?
(2)在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a:b:c;
(3)如图,AB是⊙O的直径,C是⊙O上一点(不与点A、B重合),D是半圆manfen5.com 满分网的中点,C、D在直径AB的两侧,若在⊙O内存在点E,使AE=AD,CB=CE.
①求证:△ACE是奇异三角形;
②当△ACE是直角三角形时,求∠AOC的度数.
manfen5.com 满分网
(1)根据“奇异三角形”的定义与等边三角形的性质,求证即可; (2)根据勾股定理与奇异三角形的性质,可得a2+b2=c2与a2+c2=2b2,用a表示出b与c,即可求得答案; (3)①AB是⊙O的直径,即可求得∠ACB=∠ADB=90°,然后利用勾股定理与圆的性质即可证得; ②利用(2)中的结论,分别从AC:AE:CE=1::与AC:AE:CE=::1去分析,即可求得结果. 【解析】 (1)设等边三角形的一边为a,则a2+a2=2a2, ∴符合奇异三角形”的定义. ∴是真命题; (2)∵∠C=90°, 则a2+b2=c2①, ∵Rt△ABC是奇异三角形,且b>a, ∴a2+c2=2b2②, 由①②得:b=a,c=a, ∴a:b:c=1::; (3)∵①AB是⊙O的直径, ∴∠ACB=∠ADB=90°, 在Rt△ACB中,AC2+BC2=AB2, 在Rt△ADB中,AD2+BD2=AB2, ∵点D是半圆的中点, ∴=, ∴AD=BD, ∴AB2=AD2+BD2=2AD2, ∴AC2+CB2=2AD2, 又∵CB=CE,AE=AD, ∴AC2+CE2=2AE2, ∴△ACE是奇异三角形; ②由①可得△ACE是奇异三角形, ∴AC2+CE2=2AE2, 当△ACE是直角三角形时, 由(2)得:AC:AE:CE=1::或AC:AE:CE=::1, 当AC:AE:CE=1::时,AC:CE=1:,即AC:CB=1:, ∵∠ACB=90°, ∴∠ABC=30°, ∴∠AOC=2∠ABC=60°; 当AC:AE:CE=::1时,AC:CE=:1,即AC:CB=:1, ∵∠ACB=90°, ∴∠ABC=60°, ∴∠AOC=2∠ABC=120°. ∴∠AOC的度数为60°或120°.
复制答案
考点分析:
相关试题推荐
我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.
(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?
(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?
(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.
查看答案
如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过点A作AG∥DB交CB的延长线于点G.
(1)求证:DE∥BF;
(2)若∠G=90°,求证:四边形DEBF是菱形.

manfen5.com 满分网 查看答案
图①表示的是某综合商场今年1~5月的商品各月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,解答下列问题:
manfen5.com 满分网
(1)来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元,请你根据这一信息将图①中的统计图补充完整;
(2)商场服装部5月份的销售额是多少万元?
(3)小刚观察图②后认为,5月份商场服装部的销售额比4月份减少了.你同意他的看法吗?请说明理由.
查看答案
请在下列三个2×2的方格中,各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画的三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)
manfen5.com 满分网
查看答案
在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中白球1个,黄球1个,红球1个,摸出一个球记下颜色后放回,再摸出一个球,请用列表法或画树状图法求两次都摸到红球的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.