满分5 > 初中数学试题 >

如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E...

如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E分别在AC,BC边上运动,且保持AD=CE.连接DE,DF,EF.在此运动变化的过程中,下列结论:
①△DFE是等腰直角三角形;
②四边形CDFE不可能为正方形,
③DE长度的最小值为4;
④四边形CDFE的面积保持不变;
⑤△CDE面积的最大值为8.
其中正确的结论是( )
manfen5.com 满分网
A.①②③
B.①④⑤
C.①③④
D.③④⑤
解此题的关键在于判断△DEF是否为等腰直角三角形,作常规辅助线连接CF,由SAS定理可证△CFE和△ADF全等,从而可证∠DFE=90°,DF=EF.所以△DEF是等腰直角三角形.可证①正确,②错误,再由割补法可知④是正确的; 判断③,⑤比较麻烦,因为△DEF是等腰直角三角形DE=DF,当DF与BC垂直,即DF最小时,DE取最小值4,故③错误,△CDE最大的面积等于四边形CDEF的面积减去△DEF的最小面积,由③可知⑤是正确的.故只有①④⑤正确. 【解析】 连接CF; ∵△ABC是等腰直角三角形, ∴∠FCB=∠A=45°,CF=AF=FB; ∵AD=CE, ∴△ADF≌△CEF; ∴EF=DF,∠CFE=∠AFD; ∵∠AFD+∠CFD=90°, ∴∠CFE+∠CFD=∠EFD=90°, ∴△EDF是等腰直角三角形. 因此①正确. 当D、E分别为AC、BC中点时,四边形CDFE是正方形. 因此②错误. ∵△ADF≌△CEF, ∴S△CEF=S△ADF∴S四边形CEFD=S△AFC, 因此④正确. 由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小; 即当DF⊥AC时,DE最小,此时DF=BC=4. ∴DE=DF=4; 因此③错误. 当△CEF面积最大时,由④知,此时△DEF的面积最小. 此时S△CDE=S四边形CEFD-S△DEF=S△AFC-S△DEF=16-8=8; 因此⑤正确. 故选B.
复制答案
考点分析:
相关试题推荐
如图,在梯形ABCD中,AD∥BC,∠B=70°,∠C=40°,DE∥AB交BC于点E.若AD=3,BC=10,则CD的长是( )
manfen5.com 满分网
A.7
B.10
C.13
D.14
查看答案
用一把带有刻度的直角尺,
①可以画出两条平行的直线a与b,如图(1)
②可以画出∠AOB的平分线OP,如图(2)
③可以检验工件的凹面是否成半圆,如图(3)
④可以量出一个圆的半径,如图(4)
manfen5.com 满分网
上述四个方法中,正确的个数是( )
A.4个
B.3个
C.2个
D.1个
查看答案
数据0,-1,6,1,x的众数为-1,则这组数据的方差是( )
A.2
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
如图,在边长为a的正方形上剪去一个边长为b的小正方形(a>b),把剩下的部分剪拼成一个梯形,分别计算这两个图形阴影部分的面积,由此可以验证的等式是( )
manfen5.com 满分网
A.a2-b2=(a+b)(a-b)
B.(a+b)2=a2+2ab+b2
C.(a-b)2=a2-2ab+b2
D.a2-ab=a(a-b)
查看答案
下列图案中,既是轴对称图形,又是中心对称图形的是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.